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decades but rather wished to demonstrate that Gauss and Laplace might have
had more to offer in this instance than do modern schools. Such general and
unwarranted sfatements as “In reality, numerous observations on many
streams have shown that the distribution of the flood discharges is skew”
have unfortunately destroyed the general faith in this application of the classic
theory.

In connection with the computation of plotting positions, Professor Gumbel’s
statement that the system advoeated by the writer is impracticable has no
bearing on the validity of the system. The plotting positions given in Table 1
are derived by the accepted laws of probability from the only plausible basic
assumption. Therefore, the system is not an invention of the writer but is
rather a solution of a mathematical equation. The fact that the solution be-
comes laborious has no more bearing on its validity than does the fact that x is
not an integer prove that it is incorrect. In recognizing the impracticability
of computing plotting positions accurately, the writer has suggested an approxi-
mate method which is entirely satisfactory for all purposes. This approximate
method is not a compromise between the recurrence-interval and exceedence-
interval methods, as stated by Professor Gumbel. His further statement that
the corrections in plotting positions now used should depend upor the distribu-
tion curve is in error since the selection of a finite number of occurrences from
an infinite number, being arbitrary, is not influenced by magnitudes of the
occurrences and consequently cannot be influenced by the distribution funetion.

The writer has been unable to make a complete check of the mathematics
mvolved in Professor Gumbel’s method and is therefore unable to evaluate its
merits completely. However, from the curves published by Professor Gumbel,
the method appears to be justified from an engineering standpoint. The pro-
cedure outlined by the writer, as shown in Fig. 11, also is justified from an
engineering standpoint and has the additional advantages of simplicity and
agreement with accepted theory.

The preceding discussions of this paper have been of great assistance to the
writer in clarifying some of the important points of the paper. The contribu-
tions of those who have presented discussions are sincerely appreciated.

The writer purposely has avoided a discussion of the merits and demerits
of the various “methods” of statistical analysis now employed in hydrology, as
such discussions have been published many times. Rather it was intended to
explain the besic logic of the duration-curve type of analysis and to call atten-
tion to a few essential respects in which the mathematical theory of the duration
curve has been departed from repeatedly.

It is believed that, in recent years, the theory of the duration curve has
been developed so sufficiently that its unqualified, but proper application, can
be justified from an engineering standpoint. Many alternative methods used
in hydrologic design, such as the application of enveloping curves and trans-
posed storms, do not have mathematical significance. Such arbitrary designs
are not justified from an engineering standpoint if the desired magnitude of a
flood can be stipulated in such terms that the flood can be derived mathe-
matically and can be given significance thereby.
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Synopsis

A numerical procedure for computing the deflections and moments in beau.ls
and columns is described herein. The method is of particular applif:ability in
determining eritical buckling loads and configurations of bars of variable cross
section loaded in various ways. For such problems the procedure becomes one
of successive approximations. By means of a simple modification of the data
entailing very little increase in numerical work, considerably greater accuracy
is obtainable by this procedure than by others of similar nature hitherto
available.

The numerical procedure is approximate, but leads to exact momgnts (or
deﬁections) when the loading diagram (or diagram of “angle changes’’) is made
up of segments that are bounded by straight lines or by arcs qf parabolas. By
taking more arbitrary divisions in the length of a bar one obtains more accurate
results in the general case. For most practical problems no more than five or
six segments are necessary. .

The procedure may be applied to other problems which depend on f,he' same
general principles. In mathematical terms, :r.he procedur.e may .be a.pphe‘d to
the process of numerical integration of cerfain types of differential equatlo.ns,
in some cases directly, and in other cases by a sequence of successive

oximations. .
app'Ii‘he essential features of the procedure are not new. The writer's first
acquaintance with the concepts involved _in this paper came some years ago
from lectures in graduate courses at the University of Illinois, Urbana, Il.,
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by Hardy Cross and H. M. Westergaard, Members, Am. Soc. C. E. Specific
procedures have been discussed previously in engineering literature; for
example, the application of similar graphical and analytical procedures to
buckling of bars has been made by L. Vianello,® F. Engesser,® and others!;
and the application of a graphical procedure to vibration of bars and shafts
has been indicated by A. Stodola.»$ Methods of obtaining increased accuracy
with a numerical procedure have been suggested by A. 8. Niles,? Assoc. M. Am.
Soc. C. E., and R. V., Southwell, 9 among others. The procedure suggested by
Professor Southwell is in some respects similar to that described herein. How-
ever, the generalization of the procedure, the manner of application to specific
problems, the treatment of functions with cusps or discontinuities, the simplified
procedure for continuous functions with continuous derivatives, and the method
of computing shears, slopes, or first derivatives, are essentially new, are more
useful or more accurate than previous methods, and to the writer’s knowledge
have not been described previously.

ParT I.—CoMPUTATION OF MoMENTS IN BEAMS

Iniroductory.—The calculation of the values of a function of 8 single variable,
when the magnitude of the second derivative of the function is known, is a
fundamental part of a group of physical problems, examples of which are the
determination of the deflection of a string, or of a beam, and the computation
of moments in a beam due to given loads. Analogies may be drawn between
these and similar problems, since generally they may all be solved by the
same procedures.

The method of computation described herein is a numerical procedure per-
mitting as accurate & determination as is desired of the values of a function
for specific values of the variable. The method is described in terms of caleu-
lation of moments in a beam for a given system of loads, but the application
to other problems is also indicated, and particular application is made to the
problem of buckling of bars.

Treatment of Concentrated Loads.~A fundamental part of the procedure
depends on the rapid and systematic calculation of shears and moments in a
beam subjected to a series of concentrated loads. Essentially, the process is
to compute the shears from one end of the beam to the other by adding or sub-

? “*Graphische Untersuchung der Knickfestigkeit gerader Stébe," by L. Vianello, Zeitschrift des Vereina
Deutscher Ingenieure, Vol. 42, 1898, pp. 1436-1443,

* "Uber die Knickfestigkeit von Stiben verinderlichen Trigheifsmomentes,” by F. Engesser, Zeit-
schrift des dsterreichischen [ 7 und architek eins, Vol. 61, 1909, pp. 544-548,

4 A discussion of some of these methoda is given in “Theory of Elastic Stability,” by 8. Timoshenko,
New York, N. Y., 1936, pp. 84-88 and 131-133. .

1‘8 :’f:;%m Turbines,” by A. Stodola and L. C. Loewenstein, 2d Revised Ed., New York, N. Y., 1906,
PD- 5
174_; '?see alzo, for example, "*Mechanical Vibrations,” by J. P. Den Hartog, New York, N. Y., 1934, pp.

! ~Airplane Structures,” by A. 8. Niles and J. 8. Newell, 2d Ed., New York, N. Y., 1938, Vol. I, pp.
133-136, and Vol. II, pp. 126-134.

¢ ““Relaxation Methods Applied to Engineering Problems, I. The Deflexion of Beams Under Tranaverse
Loading,” by K. N. E. Brndf{:eld and R. 51 Southwell, Proceedings, Royal Soc. of London, Series A, Vol.
161, 1937, pp. 155~181, especially pp. 163-165.

! “Relaxation Methods Applied to & Spar of Varying Secction, Deflected by Transverse Loading
Combined with End Thrust or %‘ension," by R. J. Atkinson, K. N. E. Bradfield, and R. V. Southwell,
Reports and Memoranda No. 1828, Aer tioal Research Ci ittee, London, 1937,
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tracting the successive loads, then to compute the moments by adding or sn_xb—
tracting the successive shears, multiplied by the length of beam over which
the shear acts. The latter step is simpler if all the lengths between points of
application of the concentrated loads are the same. However, the gene{-al
case is not difficult, and the modification of the procedure described herein,
to handle the general case, is obvious and will not be discussed.

To avoid confusion, a definite sign convention will be adopted in the work
that follows. Moments will be considered positive when producing com-
pression in the upper fibers of the beam. Shears will be considered positive
when the resultant force to the left of 2 section is upward. Loads will be con-
sidered positive when the load acts upward. The latter convention is chc:sen
80 as to permit successive calculation of shears or moments alwz}ys by adding,
respectively, loads or shears, from left to right, and by subtracting the proper
quantities from right to left.

When the shear or moment at any point is known the calculation can always
be started from that point, but when only the moments at two points are
known, the calculation of shears cannot be performed directly. However, a
linear moment diagram, which corresponds to a constant shear, and therefore
to no load, can always be added to the moments computed from some arbitrary
shear chosen to start the calculations. Therefore, one may obtain the desired
conditions relatively simply by merely adding a straight-line moment diagram
as a correction, where it is needed.

The procedure is simplified by omitting the multiplication of the.shears by
the distance between loads until the end of the computations. That is, one can
consider the loads as numerical quantities all multiplied by a common factor.
The shears will be obtained from the loads, and will contain the same common
factor. Then the moments will be computed as numerical quantities all
multiplied by a common factor, which is the factor for the loads multiplied
by the distance between loads. ) o

The calculations are illustrated by the group of problems shown in Fig, 1.
The units in which the loads are measured and the length of the panels are
omitted purposely: These may have any values. The beam is t!iviqed into six
equal segments, and the loads are shown in Fig. 1(a). The loading is the same
for the different problems, but the manner of support and the method of per-
forming the computations vary in the problems. In Fig. 1(d) the b(?am is
cantilevered from the right end. Therefore at the left end the shear is zero
and the moment is zero. In Figs. 1(c), 1(d), and 1(e) the beam is simply sup-

ported. In Fig. 1(c) are given linear correction moments which may b_e add.ed
to the moments in Fig. 1(b) to satisfy conditions of simple support; that is,
zero moment at the two ends of the beam. The same result is obtaix?ed in
Fig. 1(d), starting with the loads but choosing the shea.l:s 80 a8 to obtain tl}e
correct moments directly. In Fig. 1(e) the procedure is carried through in
what might be a more usual calculation. One starts leth a shear of five z%t
the left end, merely as a guess. Then a proper correction to the moments is
written in. The details of the calculations are self-explanatory. '

Treatment of Distribuled Loads.—When distributed loads are applied to the
beam, one can choose equivalent concentrated loads that produce the same
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shears and moments at certain specified sections of the beam, and thereby
handle the problem with the aforementioned single procedure. In so far ag
statics is concerned, the beam with the distributed load applied directly is

equjvalent to a system of simply supported stringers resting on the beam, and

transmitting the distributed load to the beam as & series of concentrations
which are the stringer reactions. The statical equivalence is illustrated in

{a) Loads on Beams

Loads * ] 4 1 2 3 0 0
y Y l Jf i /
-6 Equal S =

(b) Cantilever Beam ; ¥
H 2 v

Loads 0 —4 - -2 ~3 0 |

Shears 0 i o [ -4 f -5 1 =7 é -10 | -10 |

Moments 1] 0 . —4 -9 ~1 6

—26 ~3

(¢) Correction of Moments in Cantilever Beam to Obtain Moments in Simply Supported Beam

a ~ H H H A
Cantilever Moments i 1 [} i ]
Jfrom (b) (! 0 -4 -9 —-18 26 —3(!;
Linear Correction to | i lé | i 1 1
Moments 0 +6 + +18 +24 430 +36
Bimple Beam Moments (] 6 8 9 8 4 [1]
{d) Bimply Supported Beam
Loads H —-4 -1 -2 -3 [i]
Shears i [ | 2 | 1 I S T
Moments 0 (] 8 9 8 4

(¢) Simply Supported Beam; Shear Assumed, and Moments Later Corrected

. s 1 B : ! :
Py H H ] T A
Loads | —~4 -1 -2 -3 0 1
Assumed Shears | 5 | 1 i 0 I =2 1 -5 1 -5 |
Trial Moments 1] 5 [} 8 4 -1 -6
Linear Correction to i ! { | i | &

Momenta Q +1 +2 +3 +4 +5
True Moments 0 6 ) 9 8 4 o

Fra. 1

Fig. 2. It may be observed that the moment or shear at any section of the
original beam is equal to the moment or shear at any section through the
beam and stringer of the beam-stringer substitute.

One obtains correct moments and, with some care in separating the two sub-
reactions that make up the substitute concentrated load at a point, one obtains
correct shears in-the original beam at the points of support of the fictitious
stringers, by considering a substitute structure loaded only by concentrated
loads which are the reactions on the fictitious stringers. One also obtains
correct reactions at the ends of the beam.

For a load diagram which consists of straight-line segments, the equivalent
concentrated loads are readily determined directly. Formulas for the equiva-

DEFLECTIONS AND MOMENTS 1165

lent loads!® are stated in Fig. 3. To illustrate the use of the procedure for such
a load diagram, several simple problems are shown in Fig. 4. In Fig. 4(a), a
uniform load on a simply supported beam is considered. Solutions are given
in Fig. 4(b) for a triangular load diagram on a cantilever beam, and in Fig. 4(c)

(a) LOADS

(b) SHEARS

(c) MOMENTS
=L _

| LOADED BEAM LI LOADED STRINGERS !

BEAM LOADED WiTH
STRINGER REACTIONS

Fra. 2.—~8raric EQUIVALENCE oF BEAM wite Brau AND STRINGERS

for a triangular load diagram on & simple beam. In Figs. 4(a) and 4(b) the
shears are computed at intermediate points; consequently the equivalent con-
centrations are shown in two parts. In Fig. 4(c) only the shears at the supports
(that is, the reactions) are computed, and therefore only the total equivalent

A L '

R¢b= Rba‘ A * A— :

22a+d) 2(a+2b) ' Ry=Ry +Ry =% (a+8bie)
(a) GENERAL FORMULAS (b) FORMULA FOR CONTINUOUS POLYGONAL CURVE

Fra. 3.—ForMULAS For EQUIVALENT CoNCENTERATED Loaps, FOE PoryGonat LoapiNg Curve

loads are shown. Note that the moments in Fig. 4(c) could have been obtained )
from Fig. 4(b) by adding a linear moment diagram.

One can obtain formulas for more complicated types of load distribution. .
For practical purposes a distribution that varies according to the ordinates to

1 The same formula for an equivalent coneentration for s polygonal loading curve has been iven in
“Die graphisch: Sotat.i‘ll: der Baukonatruktionen,” by H. Muller-Breslau, Vol. 2, Pt. II, 2d Ed., pzig,
1825, p. 4. .
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an arc .Of a second-degree parabola is sufficiently general, since it is possible to
approximate almost _any curve by segments of second-degree parabolag,
Formulas for the equivalent concentrations for such a load are given in Fig. 5,

(a) Bimply Supported Beam with Unif,
(Center moment = 2 @M = g 72/8: End reao:.‘iln:": %’3';? =qLj2)

E— é 3

é H :
~— : aN-L
Equivalent { : '
Concentrated 1 1hL 1 HE! Goramon
Longe lz 2):2 2} 3 'il 12‘ 2 Factors
: ? : * e
i } i
Loads ~05 ~05{~056  —05} - - !
Average Shears 2 | L5 i 0.8 0.5 08 l 0.5-— .6—0.5 0'5. ~-L5 —05 -2.0 q;
Moments ? 125 2.0 L5 R M H
True Shears 2.0 1.0 A - |
(reaction) . 10 (r;a%gon) oA
() Cantilever Beam with Uniformly Varying Load
24 -
18
— i |
. '1‘ i 1 |
Equivalent Concen- i | )
trated Loads —11 ~10{ ~8 -7|~5 ~4] -2 -1
Average Shears 48 H a7 19 7 1 0
Moments . —64 —27 -8 -1 5
{ i i i
True Shears 48 2 12 é ]
(reaotion) (=37-10)
{¢) Simple Beam with Uniformly Varying Load
: 4@1=4
Equivalent C l; : ;
trated Loads ~11 —18 -12 —'6 1
%sgulm&d Avezn Shears FO 20 ¢ 2 i -10 ! -6 i
rial Momen ¢
Linear Correotion to % 2 12 -t
Momenta 1] 1 2 3 4
True Moments _0 Z ;4 1—5 hO
P
Average Bhears 32 21 . -15 —lgﬁ
(reaction) (reaction)

FIa. 4.—APPLICATION oF EqQUIviLENT Loaps

in. terms of three ordinates to the load distribution curve. The formuls in
Fig. 5() for a smooth loading curve was presented by A. N4dai in 1925"1; and,
what amounts to an equivalent formula for the smooth loading curve, with

11 “Die elastischen Platten,” by A. Nédai, Berlin, 1925, p. 208, Eq. 13.

- —— e
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additional terms, was derived by Professor Southwell in 1937.8 A derivation
of the formulas in Fig. 5 appears in the Appendix of this paper, It is noted
that one of the three ordinates in Fig. 5(a) need not be an actual ordinate to
the loading curve, but can be an extrapolated value. The formulss in Fig. 5
reduce to those in Fig. 3 when a 4 ¢ = 2 b, or when the parabola becomes a
straight line. In general, the formulasin Fig. 5 may be used for any distributed
loading to give a reasonably good approximation, and they are used in the
remainder of this work.

iz
Loading Curve Lanmm;;olca‘!le:e c L ¢ b ¢
e r— A R b,t*iR R
Rnb = Rba‘ A > A

. . Iy
3a(Ta+6b=c)  F(3a+10b-c) Ry=Ryg+Ryc=75(a+10 bic)
(a) GENERAL FORMULAS (b) FORMULA FOR SMOOTH LOADING CURVE
Fia. 5.—ForuuLas For EQuivaLeNT CONCENTRATED LoADS

Problems in which use is made of the formulas in Fig. 5 are given in Part II.
A simpler manner of using the results in Fig. 5 for curves that have no dis-
continuities, nor abrupt changes in slope, is also illustrated in the material
that follows.

Parr IL—CaALcuLaTiON OF DEFLECTION OF BEAMS

General Relations and Definitions.—A direct analogy can be drawn relating
loads, shears, and moments in a beam to “angle changes,” slopes, and de-
flections of a beam,!? where the “‘angle changes” are the quantities giving the
change of slope per unit length-——that is, values of moment M divided by
modulus of elasticity F and by moment of inertia I for an elastic beam with
small deflections, The following sign convention is adopted in order that the
analogy may hold without change of signs.

The ‘“‘angle change” is defined as — E]“_{f ; & positive “‘angle change” is

considered as an upward load and therefore as a positive load. Then positive
slope corresponds to an increase in deflection from left to right, and corresponds
to a positive shear. Finally, positive deflection is taken as downward, and
corresponds to a positive moment. A ‘“‘concentrated angle change’” corre-
sponds to an abrupt change in slope at a point, and may be considered in the
calculations without difficulty. )

As a simple example of the use of the procedure, consider the deflection of a
simply-supported beam of constant cross section subjected to uniform load,
asin Fig. 6. The moment diagram is a parabola. Therefore the procedure will
yield exact results with as many or as few segments as are desired. The calcu-
lations are shown for four segments in the length of the beam. The correct
center deflection would have been obtained even if only two segments had been

1 See, for example, *'Continuous Framee of Reinforced Concrete,” by Hardy Cross and N. D. Morgan,
New York, N. Y., 1932, pp. 28-30. .
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considered. Note that the constant factors in moment, angle changes, slopes
and deflections are written as multipliers at the right of the calculations. The,
equivalent concentrated angle changes at the ends of the beam need not be
computed if only the deflections are desired.

b O]

Load

s i
f H
: i :
i ‘ N
H H H
. H : :
H H H H
H H :
: : : :
H H H
i : ;
! i :
Momeat Diagram : 322 aL?

w
LY
"""'"'“l

[ RO

i 5
! : H Common
i i | Faotors
l: 1 1
Ordinates to Moment | i | !
Diagrams 0 3 4 3 ¢ 3521?"
3.
Ordinates to Angle- l i J i
Change Diagrams 0 -3 -~ -3 0 e Ls
' , » , B2ET
Equivalent Concen- 4 l ; i I )\
trated Angle Changes — —34 —16 ~34 -7 a§ EIi2
! 1 ]
Average Slope ; 57 ; 23 g —23 ~57 ! 3; ?I i)'\i
i ! i '
Deflection 0 67 80 57 é 3; gj iy

B0gIIN  Sqlt

32EI12 384ET

Quarter Point Deflection = g——oz Center Deflection

gls R
32EI12 24EI

Fra. 6.—DEFLECTIONS FOR SmMPLY SurrorTED BEAM WiTR Uxm‘honn Loap

Center Deflection =

Slope at End of Beam = (67 4 7)

Stmplified Procedure for Smooth Angle-Change Curves~It can be shown
that, for the determination of deflections (or moments) alone, a simpler pro-
cedure may be used which avoids the calculation of the equivalent concen-
trated angle changes (or loads) from a distribution of angle changes (or loads)
that has no discontinuities nor abrupt changes in slope in the region considered.

, From the formula in Fig. 5(b) applying to a smooth curve, one has the
relation:

Be=Abt@=2b40), o)
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Then one can consider the equivalent concentration at any point such as b as
made up of two parts: (1) The ordinate to the cuirve at the point multiplied
by X; and (2) a correctipn which is % (@ — 25 +¢). The correction loads at

all the points, however, produce a deflection that is proportional to the original
angle-change curve; actually, deflections at the various points due to the

’ -
correction are % times the value of the distributed angle change at the point,

plus any linear diagram required to satisfly the boundary conditions. This
is obvious from the form of the equation. A proof is demonstrated in Fig. 7.

% 3
f 1 (%‘omtn;on
actors
o:g.m gi:t: Angle- N . N\ N ™ A
am a ¢ e
Part (2) of the Equivalent | i {
Concentrated Angle Change c~2b+a d-2c¢c+bd e—-2d+c A2
Assumed Average Slopes, H | |
Part (2 b-a c~b | d—¢ | e-d 12
Deflections, Part (2), a [ d e . MfI2
with Which Any Lineal Set of Deflections May Be Combined

Fia. 7.—DERIVATION or_Pur (2) or THE DRFLECTIONS FOR A S8moots CURVE OF ANoLe CHANGES

' The problem of Fig. 6 is solved in Fig. 8 by use of the modified procedure.
It is noted that the equivalent concentrated angle changes are not written;
consequently the slopes must be computed from the original distributed angle
changes multiplied by A, as indicated in the factors to the right of the calcu-

< 4 N-L
. . :
Ordinates to the Angle- T oLt

Change Diagram 0 -3 —4 -3 ) SFT

1
i i [ R
Average Slope, Part (1) 5 2 -2 -5 i BET
) ' ] QA
Deflections, Part (1) 0 & 7 5 [1] BET
. 3 4 3 gLt
Deflections, Part (2) 0 - -3 -2 o 2N
. . 57 80 57 qin
Total Deflestion 0 T © T ] BET

F1a. 8.—ALTERNATIVE PROCEDURE FoR ProsLEM orF Fia. 6

Iations. One should be careful that part (2) of the deflection is written with its
. 2
proper sign. It is always % times the ordinates to the curve of distributed

angle changes, and has the same sign as the distributed angle change.
When the original angle-change diagram is linear (that is, either constant
or uniformly varying) it is unnecessary to consider part (2) of the deflections

2
since one may add a linear set of deflections to make the net effect of % times

the original angle’changes and the added linear deflection zero. Then one
may add whatever other linear deflections are required to satisfy the conditions

of the problem.
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Where there is a break in the curve or a discontinuity in slope, it is im-
possible to use this simplified procedure without modification. To avoid
confusion the general procedure is recommended for such problems, *

Further examples of the use of the general procedurs and of the modified
procedure are given in Figs. 9 and 10, which illustrate respectively the calcula-

H =21, Y H Y
[
Foy
Common
‘ 1 Faotara
Angle-Change Disgram | 12 24 18136 24 12 £
i : el 3B ETL
i i :
1 5 T —2
Equivalent Concen- P\
trated Angle Changes -12 -21 —-26 —24 -12 WE I
H '
i i Pa
Assumed Average Slopes 33 i 21 [/} -26 ~50 | -—62 3%
i ] 36 & Is
Trial Deflections 33 51 A 28 22 8i LN
- T BEDL
Lmﬁn:r Correction to PN
flections :0 14 28 42 56 70 84 38 F T
. P
T .
rue Deflections 1] 47 82 96 84 48 (1} WET,

F1a. 9.—DEerLEcTION OF BEAM WITE CHANGE ™ SECTION

tion of deflections for a member with an abrupt change in section, and for a
member of varying cross section. The deflections in Fig. 9 will be exact since

the E—I-curve is composed of straight-line segments. However, the deflections

in Fig, 10 are not exact since the curve of angle changes is not composed of
straight-line or parabolic segments. More nearly correct results are obtained
by taking more divisions in the length of the beam. The number of divisions
actually taken (six) will yield results that are very accurate as is shown by
comparison with & solution having twice the, number of divisions, in Fig. 10(b),
and with an “exact” solution in Fig. 10(c).

Analyses of Siatically Indeterminate Beams.—By superposing the effects of
different end moments one can solve the problem of a statically indeterminate
beam also. For example, in Fig. 11(a) is shown the same beam as in Fig. 10,
with & moment applied to the opposite end. The end slopes due to the mo-
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ments applied in Figs. 10 and 11 are easily computed and are indicated on the
figures. The calculation of end slope from the equivalent concentrated angle
change at the end leads to & much greater accuracy than is possible by other
means—for example, by methods involving differences of various orders of the
final deflections only, as suggested by Professor Southwell.1

(a) Deflection of Beam of Variable Section Subjected to M t at Left End
| .
6A=L—+ :
M= ISOC" i i :
I =~ H i H
¥ 1 2 3 4 5 - € . Common
L ! i ] i Factors
Ordinates to Moment i i i

Diagram 1&0 150 120 90 60 30
Ordinates to Angle-

Change Diagram —1'80 -7’5 —4!0 -22.5 _1[2 -5 1] 1YE I

1 H
Assumed Average Slo) H ! i

Part (1) pe {100 | 2 | —156 | -37.5 | —485 | 545 MEIs
Trial Deflections, i i :

Part (1) 316 1315 156.6 141.5 104.0 54.6 0 N/E Iy
Deflections, Part (2) -15.0 —~8.3 ~-3.3 -19 -1.0 —0.4 0 N/E Io
Linear Correction to ’

Deflections —16.5 ~13.8 -11.0 ~8.3 —5.5 -2.8 0 N/E Is
Final Deflection ¢ 111.4 142.2 131.3 97.5 51.3 0 AYE Ie

{ . i

-End 8lo| H i
Fromlisemge Slope 1fl.4 —51.3 ME L

From Equivalent . i

Concentrated An- ! i
gle Chanxe at End 69.6 : : ~0.8 MEI
Total End Slope 1810 . —=52.1 ME L

() Resulta of Solution with 12 Divisions of Length 3:
(values given only for alternate pointa corresponding to those above)

. H ! ! i i
Final Deflections l0 llI0.7 l4tl.4 130.8 87,1 al.1 0 ME
End Slopes . 177.4 —51.9 ME In

(¢) Exaoct Solution by Integration

) ! ! | | i ! I
Deflecti 0 110.83 141.37 130.76 97.08 51.12 Q0 M/EI
End Slopes 17676 —51.80 NE Is

F1a. 10.—DEFLECTION oF Bkaxm oF VARIABLE SecTiON BY Mopiriep PrRoCEDURE

The end slopes in Figs. 10 and 11 differ slightly from the exact values
obtained by integration. A much better agreement with the exact values is ob-
tained if a greater number of segments in the length of the beam are ‘used.
There is a rapid change in the values of the angle-change curve at the left end
of the beam in Figs. 10 and 11, and consequently a greater error in the slopes
for this end than for the right end, by the approximate procedure. It should
also be pointed out that the slope at the right end in Fig. 10(a) should be
equal to the slope at the left end in Fig. 11(a), by Maxwell’s theorem of recip-
rocal deflections. The difference is due to the fact that the procedure involves

13 "Relaxation Methods Applied to Engi 1. The Deflexion of Beams Under Trans-
verse Lolglnl e ol;‘y K. N. E, Bprl:ldﬁeld and R.. V Southwell Proceedings, Royal 8oc. of London, Series A,

Vol. 161, 1937, pp. 186-167.
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some slight inaccuracies, which amount to analyzing slightly different strue-
tures in the two cases.

From the moments and slopes in Figs. 10 and 11, one can find, for example,
the stiffness and the carry-over factor for the left end of the beam by adjusting
the moments at the ends to give the proper conditions as shown in Fig. 11(c).

(a) Deflection of Beam of Fig. 10 for Moment M = 180 at. Right End, with Bea.m Dnnded into 6 Segments

e : § 6 ) =L ; > M.f 180
¥ + + Common
H H : Factors
Final Deflections 0 483 82.5 269 88.9 56.9 0 N/E Lo

End Slopes 5}.2 H i { —69.7 ME In
i i !

() Ezxact Solution by Integration
N 1 | } H H H |
Deflections 0 48.48 8266 9703 8809 . 5698 ° 0O NE I
nd Slopes 51.89 -69.73 MNMEIL

(¢) Combination of Fig. 10(a) and Fig. 11(a) to Obtam Stiffness
and Carry-Over Factor for Left End of Beam .

End slopes, M = 180 at left end |

18}.0 —52.1 ME I
H End slopes, M = ~ 0.747 X 180 at right end }

-38 2 +52:'] ME I
! Total slope, M = 180 at left end, M = — 0.747 X 180 at right end |

142.8 0 ME Io
i
i Carry-over factor = — 0.747 !
! =180 El E I- i
; Stiffness ~ o = 1,261 —— :

(d) Exact Values of Carry-Over Factor and Stiffness for Left End of Beam, hy Integration
Carry-over factor = — 0.7442

Stifiness =  1.3031 22t

F1a. 11.—CALCULATION OF STIFFNESS AND CARRY-OvER FacTOR

For comparison, “‘exact’” values of stiffness and carry-over factor are shown
in Fig. 11(d), obtained by integration. The agreement is close although only
six segments were used in the approximate procedure.

Parr III—DEFLECTION OF BEAMS WITH AXIAL LoOADS;
BuckrLiNng oF CoLUMNS

General Procedure~With an accurate procedure available for computing
deflections of a beam when the moments are known, it is possible to set up a
relatively simple procedure for handling deflections of bars subjected to axial
loads as well as lateral loads, by successive approximations. In so far as the
final deflections are concerned, the effect of lateral loads on the bar is the same
as the effect of initial deflection of the bar from a straight line.

The following method of analysis is recommended for the general case:

(1) Divide the bar into a number of segments. Compute the deflections of
the bar due to the lateral loads only, and add these deflections to the initial
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deviations from a straight line. Let the total deflection with no axial loads
be denoted by the symbol w;.

(2) Guess at an assumed additional deflection, w,, which is to represent
the effect of the axial forces on the bar. Let the sum of w, and w; be denoted
by we; that is, )

(3) Compute the moments due to the axial loads on the bar, corresponding
to the deflections wy.

(4) Determine the deflections of the bar for the moments computed in
step (3). Let these deflections be denoted by w’,.

(6) Compare w’s and ws. If they are equal, w, is the correct additional
deflection of the bar, and w, is the correct total deflection of the bar. If they
are not equal, repeat steps (2) to (5) until a desired measure of agreement is
reached. One may take the values of ', in step (4) as a new set of assumed
values of w,, or one may modify these values in order to hasten the process
and obtain agreement more rapidly between the assumed deflections and the
resulting deflections.

It is necessary to point out that the procedure will work to advantage only
when w’, is.a better approximation to the true additional deflections than w,;
in other words, the procedure works best when the sequence of successive
approximations converges. It may not work at all when the sequence diverges
or oscillates.” One can formulate conditions that will insure convergence; but
for practical purposes it will be evident that one either approaches a definite
result or does not; and if the calculations approach a definite answer, it is the
correct answer. Various “tricks” are possible in solving problems in which
convergence is slow, or in which there is actusally divergence of the results.
However, such problems are not common. The writer does not wish to confuse
this presentation with too elaborate a set of procedures for exceptional cases.
It is sufficient to point out that if by any means w’, and w, can be made equal
at all division points, one has the correct deflections. By trial, or by a system-
atic procedure, or by use of simultaneous equations, the two sets of values can
always be made equal (even when the routine procedure of using the results
in (4) as a new step (2) diverges), since one may take any arbitrary set of
values of w,.

Examples of the general procedure are given subsequently herein. Usually
it is possible to obtain a good set of values of w, if one has available a solution of
the problem of pure buckling of the particular bar considered. For this reason
a discussion of pure buckling will be given first.

Treatment of the Problem of Pure Buckling Without Lateral Loads —Consider
& bar subjected only to axial loads, without lateral load or initial deflection.
Then the quantities w; in step (1) of the general procedure are zero. The axial
loads are to be determined so that an assumed set of deflections w, corresponds
to the same set of deflections w's, which means that the deflected bar is in a
position of neutral equilibrium, and is on the point of reaching a position of
stable {(or possibly unstable) equilibrium which is different from the original
undeflected position.
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The special procedure becomes:

(a) Guess at a set of deflections w,.

(6) Compute moments corresponding to the deflections w, and an assumed
set of values of the axial loads., It is convenient to consider generalized loads.
That is, one considers the symbol P to represent all of the axial loads, or the
system of such loads, acting on the bar. By assigning values to P, one assigns
values to each of the individual loads which P represents.

(¢) From the moments in step (5), compute deflections w’,.

(d) Compare the deflections w’; and w.. If they are propertional—that
is, if they can be made identically equal for a particular value of P, or for a
particular set of values of the axial loads—there is a critical buckling load and
the configuration of the bar corresponds to that load.

Again, certain questions may be raised regarding the convergence of a
sequence of computations but these are beyond the scope of this paper;
moreover, for most practical problems the difficulties do not arise.

Consider, for example, the calculation of the critical buckling load for a
simply supported bar of constant cross section loaded at the ends with axial
compressive forces. The calculations for an assumed parabolic deflection
curve, symmetrical about the center line, are shown in Fig. 12. Only half the

H iCenter
i i Line
: : L
- FSA=2 !
N | Gommon
Assumed Deflections, 14 0 36 64 84 926 1004 2
Distributed Angle Changes ¢ —36 —64 -84 . —06 —100 —96 PIE 1
Average Slope, Part (1) j 330 | 204 | 230 § 146 | 60 | ~50 | PMEI
Deflections, Part (1) 6 330" 624 854 1,000 1,050 1,000 PXN/EY
Deflections, Part (2) 0 -3.0 -5.3 -7.0 —8.0 —83 —8.0 PN/EI
Resultant Deflections, w's 0 32'7.0 618.7 847.0 9!)!2.0 1,0?1.7 99!2.0 PXYET
i i | !
Ratio, 5‘; (0.1200)* 0.1101  0.1034 0.0&92 0.0968 0.0860 0.0868 EI/P At
(a) Average ratio, neglecting ratio for ends = 0.1017 g% ’ Lo Po o= 10,17 %‘I
. - Zwa EI . EI
(b) Ratio of sums of deflections, by 0.0998 N’ & Per 9.98 I
. . Z t0a t0'a EI . BI
(c) Best ratio by least aquares, Sk - 0.0987 P’ s P = 9,87 =

» Beam aad deflections symmetrical sbout center line. * Ratios of end slopes.

F1a. 12.—Crrricar Bocxuing Loan ror Bar oF ConsTanT SECTION,
STARTING WITH ASSUMED ParABoLIc DrrrEcrioNn Curve

bar is considered since the structure and the deflections are symmetrical. Itis
seen that the ratio of w, to w’, is not constant; the different values of this
ratio are recorded, and give the value of P required to produce equality of
deflections at the particular points. A repetition of the calculation with new
1 Bee, for example, “Zur Konvergent des Engesser-Vianello-Verfahrens,” by A. Schleuangr. Berlin,

1938,
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values of w,, equal to, or proportional to, the values of w’, shown in Fig. 12,
would give more nearly uniform ratios. The best value of the eritical load may
be taken as the average of the ratios, or as some weighted average; in Fig. 12,
three different values of the critical load, computed in different ways, are
reported. From similar calculations, it is the writer’s conclusion that in most
cases & reasonably good approximation to the critical load is the ratio of the
sums of the ordinates to the curves of w, and w',.

A more uniform set of ratios with a correspondingly better approximation
to the critical load is given with a curve that more nearly approaches the true
buckling configuration. "In Fig. 13 & set of values is assumed for w, approxi-

; ! A { Center
: : ; : : Une_"J
P—> : : 3
—5A "é' H
: Common

: H : i ' Factors
Assumed Deflections, wa 0 31 " 58 81 95 100
Distributed e Changes 0 =31 -50 —81 -85 —-100 PIE I
Average Slo] 'art (1) 6 316 | 285 | 228 | 145 i 50 PMEBI
Deflection, Part fl) 318 601 827 872 1,022 PMET
Deflection, Part (2) [1] —-2.6 -4.9 -8.8 —-7.9 —83 PM/EX
Resultant Deflection, /s [ 313.4 586.1 820.2 964.1 1,013.7 PMJET
Ratio, :—'.- . .. 0.0989 0.0890 0.0987 0.0985 0.0986 KI/PA?

. EI
Average ratio -0.0988},—)‘,

. EI
Ratio of sums = 0.0987 oy

EIl El
% Per = 0.0887 5 -9.87F

Fra. 13.—Crrrical BucsLmie Loap ror Bar or ConsTaNT Skcrion

mately proportional to the values of v’, determined in Fig. 12. The result is
practically exact. In both Figs. 12 and 13, the true value of the critical load
is ™ E I[L* or, 9.870 E I[L2.

Obviously it is possible to find different patterns of deflections corresponding
to different values of critical loads for the same bar. In general, only the lowest
critical load is of significance as far as pure buckling is concerned, since the

" higher loads must correspond to essentially unstable positions of equilibrium;

but, if an initial deflection curve is assumed that contains no components of
the configuration corresponding to the lowest critical buckling load, the lowest
load cannot be obtained from this procedure (nor would it be obtained from
any other available procedure, such as methods involving minimum of energy).
Such a situation would follow from the assumption of a deflection curve anti-
symmetrical about the center line for the beam in Fig. 12. One would reject
such a curve intuitively for this problem. Yet in an unusual case, it might be
possible that a designer may reject, unthinkingly, the configuration that corre-
sponds to the lowest buckling load. An example of such a case is shown
subsequently in Fig. 20.
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Ordinarily, convergence of several différent sequences of computations in-
volving different shapes of assumed deflection curves, to the same final shape,
would be a sufficient indication that the designer had reached the configuration
corresponding to the lowest critical load. In some cases, however, the con:
vergence of a sequence of computations may be very slow; this will be so when
the next higher critical load differs only slightly from the lowest critical load.
Methods of handling suck problems can be derived but are beyond the scope
of the present paper. .

Determination of Mazimum and Minimum Values for the Critical Load—In
general, the lowest critical buckling load must have a value between the limits
defined by the smallest and largest values of the ratio of w, to w’s, when all
values of w, and w', are positive. One can reason as follows to justify this
rule: If every point on the derived deflection curve lies outside of every point
on the assumed deflection curve, the load must be greater than the load required
to produce neutral equilibrium, since the bar. is tending to deflect even farther
away from its original straight configuration than assumed. This means that
the initial straight configuration is now an unstable position of equilibrium.
On the other hand, if every point on the derived deflection curve lies between
the original straight configuration and the assumed configuration, then the
load must be less than the load required to.produce neutral equilibrium,
Evidently, in this case, the undeflected position is a position of stable equi-
librium; but the two conditions deseribed correspond to the maximum and the
minimum values of the ratio of w, to w's. Therefore the critical buckling load
must be between these limits. The rule is important for practical purposes;
the designer can readily detect between what limits the buckling load must lie.

In using this rule to bound the value of the critical load, it must be re-
membered that the structure set up for analysis is not exactly the same as
the structure it represents, although with a reasonably large number of divisions
the two are closely similar. The process of dividing the bar into segments is
equivalent to substituting for it a slightly different structure. This becomes
evident if the buckling load is computed for a bar divided inte only two seg-
ments, as in Fig. 14(a)."

In certain cases the foregoing rule is inapplicable, Care must be taken in
using it when axial loads are applied other than at the ends of a bar. Also,
the rule would be misleading in such cases where the lowest critical load corre-

sponds fo a deflection curve that has both positive and negative deflections, .

whereas the next higher critical load might correspond to a deflection curve
with only positive ordinates.

Tllusirative Problems for Pure Buckling.—The problems shown in Figs. 14,
15, and 16 illustrate further uses of the procedure for comput.mg the critical
load for a beam subjected to pure buckling.

The effect of taking different numbers of segments in the length of the bar
ig illustrated in Fig. 14, for a simply supported bar of uniform section subjected
to end thrust. The error in the buckling load computed by the approximate
procedure described herein, compared with the exact buckling load, is 2.74%,
for two segments, 0.52%, for three segments and 0.16%, for four segments, in
the full length of the bar.
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In Fig. 15(a), a solution is given for the buckling of a bar consisting of parts
of constant but different moment of inertia. Because of the abrupt change in
moment of inertia there is g discontinuity in the values of the angle changes in
the bar. The result obtained with only five divisions in the half-length of the
bar is

E1I
P = 4.51 -I,—’ ......................... 3)
which compares with 4.50 % given by Professor Timoshenko!5 ag the “exact”

value of the critical load. It should be remembered that several trials were
necessary before as uniform a set of ratios as is shown in Fig. 15(a) was
obtained; but the intermediate work can be done without refinements and the
final result obtained fairly rapidly. For practical purposes it would not be
necessary o go so far. For example, Figs, 15(3) and 15(c) might contain all
the caleulations required in most cases, where even the first step, starting with
an assumed parabolic deflection curve, would be adequate for almost any
practical problem.

In a similar manner, other problems involving variations in moment of
inertia along the length of the bar may be solved. Where the variation is
smooth (that is, without abrupt changes) the relatively simple modified pro-
cedure which does not require calculation of “equivalent” concentrated angle
changes may be used. .

The solution of the problem of buckling of a bar fixed at one end and simply
supported at the other is shown in Fig. 16. The problem is solved by adding
to a simply supported bar an end moment to annul the rotation at one end of
the bar. The problem might also have been solved by dealing with a cantilever
beam acted on by a direct thrust, and adding the effect of g lateral load at the
end in order to make the deflection at the end zero. The results would have
been exactly the same.

The procedure used in Fig. 16 may be outlined as follows:

(@) Find the deflections and end rotation of a simply supported bar due to
& moment applied at one end. Denote the deflections by w,.

(b) Assume a deflection curve for the bar fixed at one end and simply sup-
ported at the other. Denote the deflections by w,. Compute the moments in ,
the bar due to the direct loads and the deflections w,. One may also include
assumed moments to account in some measure for the effect of fixing the one
end of the bar. In general, it would be desirable to include such “indetermi-
nate” moments, although in Fig. 16 they were omitted.

(¢) Compute the deflections wp and the end rotation corresponding to the
moments in step (b). If the end rotation is not zero, add such a moment ag
would be required to make it zero. This involves adding deflections also,
proportional to w,., Denote the resultant deflections by the symbol w’,.

(@) Compare w, and w'q, 88 in the procedure deseribed previously for deter- -

mining buckling loads for statically determinate bars. If wq and w', are

similar, one has the correct shape of the deflection curve, and one can obtain

the critical load, If W, and w', are not similar, one may repeat steps (b) to (d)
1% *“Theory of Elastic Btability,” by 8. Timoshenko, New York, N. Y., 1936, pp. 128-131.
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as many times as necessary, until one obtains a sufficiently good value of the
critical load.

A procedure similar to the foregoing may be developed for other statically
indeterminate beams or columns. ’

Note that in Fig. 16(a) the moment diagram and the angle-change diagram
are linear; therefore it was not Decessary to compute part (2) of the deflections,
as explained in section II of this paper. In Fig. 16(b) a common factor a is
indicated for the deflections in order to make it clear that the end moment in
Fig. 16(c) depends on the deflections. The final value of the critical Ioad is
practically exact.1¢ ,

Illustrative Problems, Combined Azial and Lateral Loads.—When lateral
loads act on a beam together with an end thrust, the effect of the end thrust is
to produce additional deflections and additional moments beyond those pro-
duced by the lateral loads alone. The additional deflections are governed by
the deflection due to the lateral load alone, and by the ratio of the axial loads
to the eritical value of the axial loads.

For the first step in the general procedure of solving such problems it is
necessary to assume a set of values of the additional deflection, w,. As s con-
venient approximation for the first trial value of w, it is desirable to take w, as
follows: ’

in which P, is the ﬁmgnitude of the critical buckling load, P is the magnitl.'lde
of the actual load, and w; is the sum of the initial deflection and the deﬂectfon
due to the lateral load alone. When w; is of the same shape as the deflection

" curve corresponding to the lowest critical buckling load, the value of w, given

by Eq. 4 will be exact.’” In other cases, it hastens the convergence toward the
correct value of w, if w, is assumed as suggested. )

The calculations for a simply supported bar subjected to end thmst§ and
uniform lateral load are shown in Fig. 17. The values of w; for the un}f0rm
load are computed first. The value of P,, for the bar can be taken from Fxgl.?lI2.
Then with the given load, P = 0.02 %, and the critieal load, P, = 0.0987-F- )
one finds from Eq. 4 the following result:

We =0264wi.................... .. ... (5)
- With this value of w,, the computations in Fig. 17(b) lead to a set of values ¢?f
w's which are practically equal to those assumed. If further refinement is

. desired one can repeat the calculations. One may also deal with additions to

the values of w, already assumed and obtain additions or corrections to w'y;
but in this problem no further computations appear to be necessary, and. one
may conclude that under the given conditions the effect of the axial load is to
cause an apparent increase in the maximum moment due to the lateral loads

alone of about 269,

1 “Theory of Elastic Stability,” by 8. Timoshenko, New York, N. Y., 1936, pp. 88-89.

**Buckling of Elastio Struetures,” by H. M. Wi rd, Transactions, Am. Soc.
c. E" %i. {?i%%?&eéﬂﬁum 676-676, upcecisll; Pp. 618-810. Note difference in notation, however.
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Similar caleulations are shown in Fig. 18 for a bar subjected to a moment at P Y P o 8 <fRzRxRRaly 28 - o
. - . . 3 . 8
one end combined with direct thrust. Here the first approximation is not , ESRg X 232 %[§ = e X SIENEIREE % XE=[FHR =
nearly so close to the final answer since the deflection curve due to the moment . MR o ooe. “
alone differs considerably fr ion i iti 3 %
e y from the configuration corresponding to the critical ° © o o o. 3 o 3le ° e olo o
. 1
The procedure described here is applicable also to problems in which P is. b
negative; that is, where axial tensions instead of compressions act on the bar. €x“.’)
In such cases, however, the effect of the end tension is generally to reduce the e 2 2 @ @ u e g
. . [y . s,e = 1 SSevtrammeal 2 e~
deflections due to the lateral loads or initial eccentricities only. The same = g2 3 = % ~8 T 28 E 8 g8 S
« ' ‘Q‘
: CeterLine—> P
; ) I (o T %
P =002EIMN P +— NN L I - - o
£ e — TF | S8 B EE—8 F FF g5l 5| B]
—5 =L — : i o ~ 1 = g
: H : H 3 3
i i (a); i Fntoer : “‘-? S
Moments Due to Lateral Load ¢ 36 ; ¢L N ° a : g
Distributed Angle Changes 0 36 -344 —gi —gg 100 {'-)E;Ilsu : S4—8 § & 3 s 2 2 g | 3 g gls 3 &
x q NYs wefleenels FfF — = e B 8 w 8
Averags Slope, Part (1) [ 330 | 204 | 230 i 6 | &0 AaNBET © : 2 & & 2 E7gs ¢ |8 24
Defleation, Part (1 a 330 624 854 1,000 1obe  INBET ~ o« ! ~ ~ | 8§~
Deflection, Part g ;3 =5 -7 —8 -8 aA/SET - . g .-?3 g
Deflection, w; ti az7 619 s4§7 W 102 aBEJ ' S B 7 &
. i |
i ; | e .3 T ® qajw | e 2 |e g E
X T I ® { i i E‘g"“‘{: g & '3'*"“;5 ‘7‘; s 5"‘5&“55 518 § s
Assumed Deflection, 1w, l i [7 i i © - I - B - a £
il R TR S R Y VT [ :
Moments Due to P 0 8.20 1552 2128 aigs 9014 ¢ s L @ 3 3 g
Distributed An%e Changes 0 820 —1552 2128 -2488 2614 ¢NBEI @ NN o =% wlgs g 318 9 s
ﬁ:%‘;%‘foﬁ“ e, Part (1) ) s | o781 o021 o L 3795 152397 5 MBEI g g § K §— g $ e —E-58 g% & E
3 3 o 2 o g 4 : { H H H - N -
Deflection, Part 52) 0 —068  —126 i1y a2 ] R ET -« ! - N R h E
Resultant Deflection, '« 0 82 18 215 253 266 gMSEI- ’ E g g @
F1e. 17.—DerLzcTion oF 4 Bar Susszcren 7o Untroru Loap axp Exp Taeusr Q @ ? © @ @) E a|la § 3
. 8 2 8§ § §——8 2 8|2 [82.] g =5 8”7
general procedure may be used. The value of w, suggested in Eq. 4 will be & 2359 = ! = g:‘ R
negative, since, if the axial tensions are denoted by T, oue has the result - a g '8
3 s E
we = — Wieriion... e (6) o g 3 g q 221 ” 212 3 8
L 88 § % F-——R% § f|F4—8-—5 {5 i}
. - I
. 3 . » : - o‘ ]
A difficulty arises in problems where T is numerically greater than the value 2 =
of the lowest critical buckling load. Insuch cases the sequence of computa- X g
tions will oscillate, and will not converge. In general, each assumed value of Q Y o © © ©® ®—=-o ©° o|e © g © g g
w, will lead to a value of w’, which will be farther from the true configuration” “ s
than w, if w, is not correctly chosen equal to its true value. Methods of q, - &
solving such problems can be developed, however, and in general one can arrive |’ - SN g .
! . ‘ g < 2 0%
eventually at reasonably good results since the effect of the end tensions can . g K a
. N - o o o o~
never be to produce greater deflections than w; except at & few points. Further nss £, A g g = S s - °
discussion of problems such as these will not be given in the present paper. g E’“ =] &5 5 g 55 £ E 3 g S 5 & 2
» . . . . 2 2 > <
Buckling Due to Azial Loads Applied at I ntermediate Points Along the Length 2 ;g g Qr: + 5 33z & g £ 9 N g g §°
- - . . 2 et o ~ (=]
of @ Bar.—The problems previously treated herein concern axial loads applied & 75 & E:? £ 3 2 E: & 4§ ¢ .§ ; g = 2
at the ends of & bar. Bars with axial loads applied at interior points are con- by S gs ! § i g 2 g 3 5 s g 2 3
sidered in Figs. 19 and 20. In Fig. 19, the left part of the bar is in compression ~ &8 < ® Ae H = AR R
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and the right part in tension. The point of application of the interior load is
assumed to deflect with the bar; consequently if the load point deflects shears
must be applied at the ends of the bar for equilibrium. Since there will be a
cusp, or discontinuity in slope of the angle-change diagram at the point of
application of the interior load, the procedure used is to write the equivalent
concenfrated angle changes instead of making the correction that can be made
for a smooth angle-change curve. In Fig. 19(a) a symmetrical parabolic de-
flection curve is assumed first, One finds a peculiar result: Some of the
resulting deflections are negative. If these deflections are taken as s new
deflection curve, and the process repeated, eventually one comes to the result
shown in Tig. 19(b) where, apparently, the critical load is negative; but this
merely indicates a situation in which the left part of the bar is in tension and
the right part in compression. Tt is reasonable that the buckling load should
be less for this arrangement of loads since a longer part of the bar is thereby
subjected to compression. The final result for the original problem is shown in

Fig. 19(c). It may be obtained by repeated trials, but not by a process in -

which each new configuration is the result obtained from a previous assumed
configuration, unless the starting point is a configuration not containing any
appreciable component of the type obtained in Fig, 19(6). The shapes of the
final deflection curves and the moment diagrams corresponding thereto are
shown in Fig. 19(d).

A bar subjected to two opposing loads applied at the third points is illus-
trated by Fig. 20. An exact solution for this problem is available.1s The
problem is given not only to illustrate the procedure for an unusual case, but
also to show what can happen when care is not taken to insure that components
of deflection corresponding to the lowest eritical buckling load are present in
the assumed deflection curve. The loads are assumed to be applied on the
axis of the bar even when the bar deflects,

A symmétrical deflection of the bar is shown in Fig, 20(a). The deflections
outside of the region subjected to compression are immaterial in & consideration
of the critical buckling load. Tt will be noted that the critical load is the same
as in Fig. 14(c); but some care is necessary in obtaining the proper value of c,
the unknown constant part of all the deflections in the region considered. For
the final deflection curve ¢ ean be obtained easily by taking the complete de-
flection curve for w’, and repeating the calculations ; but for intermediate steps,
¢ can be chosen as having any value, which complicates the problem of placing
a limit on the critical load. Obviously there should be no distortion in the
region outside of the central part of the bar, however, and therefore one can
always make a fair estimate of the situation in this case.

In Fig. 20(b) an antisymmetrical deflection is assumed, and the corre-
sponding critical load is calculated, Here again, the deflections outside of the
region subject to compression do not enter into the finding of the critical load.
It is of interest and importance that the critical-load corresponding to the anti-
symmetrical deflection is lower than that corresponding to the symmetrical
configuration for the arrangement of loads chosen. The bar would actually
tend to buckle by more or less of a rotation of the central section, However,

1 “Uber die Knickung eines Balkens durch Lingskriifte,” by O, Blumenthal, Zeitsch ift fir ang d.
Mathematik und Mechanik, Vol, 17, 1837, pp. 232-244, especially pp. 234-239,
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this would not have been discovered if only symmetrical deflection curves had

been assumed.
Part IV.—CoNcLUDING REMARKS

Treatment of Large Deflections.—In all of the problems discussed herein the
fundamental relation between deformation and moment has been implicitly
assumed to be of the following type: '

dy _ _ M
i = TR e N

in which y is the deflection, positive downward. Where deflections are large,
Eq. 7 is only approximately correct. One should replace it by the relation:

dly
dz? M
;y T TR e (80:)
[1+(2) |
o M dy 27383 - . . .
%"‘*’ﬂ[l'ﬁ'(a)] ................. (8b)

The use of the exact relation offers no serious difficulties. In computing
deflections from it one must assume the values of the deflections first, and

M sy
determine the “angle changes” from modified values of — Vb (by multiplying

by a function of the slopes at various points along the bar). - One comput?s
the deflections by a series of successive approximations, in which each step is
similar to the various procedures outlined in the paper. However, it is not
often necessary to consider such refinements.

Further Applications,—The procedure described herein is applicable tov
many other problems, since it permits a relatively simple and accurate nu-
merical integration of a class of differential equations.

For example, the problem of a beam on elastic supports can be solved by
first assuming a set of deflections, then determining the forces acting on the
beam, with the consequent moments and angle changes. From the angle
changes, the deflections can be computed. If these are the same as the
assumed deflections, the problem is solved. If they are different, the process
must be repeated.

The general procedure may also be modified so as to solve the problem of
determining the natural period of vibration of a beam, or the critical speed of
a shaft. Problems of this kind have been solved previously by similar pro-
cedures.®®* The use of the present modification is to produce a more accurate
solution with generally less effort.

Conclusion.—The numerical procedure deseribed herein permits a simple
end rapid calculation of deflections of beams and columns and of critical
buckling loads for columns with a high degree of accuracy. The method can
be extended to other problems of the same mathematical nature.
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APPENDIX

DERIvaTION OF FORMULAS FOR EqQuivALENT CONCENTRATIONS

In Fig. 5(a) the origin of coordinates is at a, with z positive to the right,
and g represents the magnitude of the load at any point, positive upward. Let

Tz . . . . .
z=g,in order to obtain a dimensionless coordinate, and consider the curve of

loading with ordinates a, b, ¢ at z = 0, 1, 2, respectively, to be a second-degree
function of 2 or of z. )

It. can be regdily verified that Eq. 9 represents a general second-degree
function of z having the required values g =a,bcatz =0, 1, 2, respectively:

q=§a(z—1)(z—2)—-bz(z-—2)+1}cz(z-—1) ........ 9)

The:n, from statics the equivalent concentrated loads Ra and Ry, are
determined by the equations:

1
R,.5+Rl,.,=)\f QdZ. oo, (10a)
and ’

Evaluation of the integrals yields the results

R,,,,=-2?j1(3a+10b—c) .................. (11a)
and i .
R¢b=2%(7a+6b—c) ................... (11b)

By analogy, one finds the value of Rj,:
A
Rb,=ﬂ(3c+10b—a) ................... (12)
from which is readily obtained the value of Bj:
Ry = Ryg + Ry = -1—-)\2((1-{- 10d+¢)..............(13)

Similar formulas can be written for a loading curve of higher degree in z or
z in terms of ordinates at'more points. One may also derive expressions for R
in terms of differences or of central differences by expressing ¢ in such terms.
Furthermore, one may develop corresponding equations when the segments
into which the loading curve is divided are not of equal length. However, for
practical purposes Eqs, 11 and 13 are all that are generally needed.
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DISCUSSION

Bruce JornsToN,” Assoc. M. AM. Soc. C. E.—The numerical procedure
presented by Professor Newmark has advantages of simplicity, accuracy, and
speed that make application to actual design work particularly effective. In
an extension course given at Lehigh University, in Bethlehem, Pa., the writer
has had the opportunity of presenting the method in detail to a number of
engineers. Several of these engineers have found the procedure superior to
other similar methods. The procedure was recently applied in connection
with the analysis and design of several unusual mill building frames that are
now (May, 1942) under construction.

As stated by the author (see “Synopsis’’), ““The essential features of the
procedure are not new’’—they are based on the well-known relations between
the geometry of a bent beam and its moment-stifiness ratio. The importance
of the procedure is not its newness, but its usability in actual design. It re-
duces the analysis of bending and buckling of struts to a systematic and ac-
curate procedure of arithmetic, with a minimum chance of computational errors,
and is exact enough for most applications. In actual structural members the
moment of inertia frequently varies in a manner that makes actual integration
of the fundamental differential equations exceedingly complex, if not impossible,
Simple numerical procedures such as the author’s deserve relatively more
attention in structural engineering literature than they now have.

The practical usefulness of the procedure in continuous frame analysis will
be increased if a summary is made of its relation to the slope-deflection and
moment-distribution procedures for obtaining terminal moments of members
in framed structures. In Fig. 21 is shown a rotation notation for the angle
changes due to unit positive moments applied at either end of a simply sup-
poried member. Moments are assumed as positive when they apply a clock-
wise ecouple to the end of the beam. The angles of rotation of the end tangents
of the beam axis are also considered positive when clockwise. The first sub-
script indicates the location of the angle change and the second subsecript in-
dicates the location of the applied unit moment—that is, ¢4z = angle change
at A due to the unit moment at B.

By the law of reciprocal deflections, s = ¢p4. The three independent
angle changes ¢44, ¢85, and ¢45 may be determined by model analysis or by
two applications of the simple numerical procedure described by the author
and illustrated in Figs. 10 and 11. In the symmetrical member ¢a4 = a5,
and only one application would be necessary. The angle changes ¢’4 and
¢’s, due to any applied load (also shown in Fig. 21), are determined easily by
one additional application of the author’s numerical procedure. Note the
difference in the sign convention for the terminal moments M4 and M3; but
the sign of the angle changes will be the same as that of the end slopes in the
author's paper. These five angle changes determine any or all of the coeffi-
cients needed in a generalized solution either by slope deflection or moment

9 Senior Engr., Johns Hopkins Laboratory of Applied Physics, Silver Spring, Md.
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distribution. The effect of direct load upon the bending stiffness could be
included, but is usually neglected in bridge and building frame analysis.

The positive rotation notation for moments, shears, angle changes, and
lateral translation of the ends of any member in a loaded frame is shown in

Unit 14 B +
(-+)
Moment ¢AA(+) be (~
M’”ﬁ\ t
Y \yp-) b +d B{_/Moment

I+

1
4 B¢
Fra. 21,—Enb-AnoLp CuaNoEs DErERMINED BY NuMmERrICAL Proczpuam

Fig. 22. In the case ‘of the member with uniform cross section, the “slope-
deflection” equations are written:

"‘Maus =2¥(204+03 - 3—;}) + Mpaooooo.o. ... (14a)
and )
.MBAFZIﬂ(203+ﬂA—3-’l:‘-):EMFB ....... «..(14b)

in which Mpy and Mzp are “fixed-end” moments due to loads on the beam
span. For downward loads on a horizontal member, M4 is negative and
M g is positive. ’

M 4 | |

+) N Vo 4
A N
vaB By (-+)
a8 A O+ \ )

y
. Mpy
. ! o~ gl

Fia. 22.—MouenTs, 8aKARS, ANGLE CHANGES, AND LATERAL TRANSLATION OF ANY FRAMED Mzuser,
SrowN as Posrrive ,

It may be shown by the “moment-area” relations that the following slope-
deflection equations obtain for the general case of variable I, written in terms of
the fundamental angle changes shown in Fig. 21:

1
MAB=m[¢339A—¢ABGB |
+ (pan — ¢55) % + dand's — $8B ¢4 ] ....... L ...(150)

JOENSTON ON DEFLECTIONS AND MOMENTS 1191

TABLE 1.—MoMeNT DisTRIBUTION FACTORS FOR Enp A OF ANY

MEeMBER AB
UNIFORM
SECTION
FA%Tz:gAﬁg LgAixi.s > CARRY-OVER FACTOR
. “-t] 1 pm—tan 1
A M| 4B
kg, M1 s -l,.—,f 850 = z
C, ‘D A=0
Y e +1 03~0 MOMENT STIFFNESS
9=
. 1 4EI
! 6=+1 Spag=—t—— AEl
Syan=|{M,|85=0 DV AT !
g, -0 A=0
A
C'\M‘ N, SHEAR STIFFNESS .
B
Moa - D 6, =0 _ lr2rgp4fe 12E/
A=1 “ Syaa g
VY SVAB- 14 03‘0 ’=(¢AA+'MI‘43)
: A=+1 :
Lk b "MOMENT DUE TO
C I I I | ’) UNIT SIDESWAY
- ~(trp 6E!
XIF MF‘BL ' 6,=0 Mea g, Pys) r
4 MVA- MA 08 =0 44" ABTaR
A=+1
ey aors ot End FIXED-END MOMENT
by Interchanging - (1,595 +6") - “”x
Subscripts A and B -0 Mpg=— 74 I,
MFJ- MA 98-0 LW, %a%a (‘5‘_,,‘{.)
. A=0
SPECIAL CASE, FAR MOMENT STIFFNESS
END SIMPLY SUPPORTED 2 1 3E1
M, A-+l SMAB-— —_
C 4 4 Speas=| M |Mg =0 P 7
‘— 9 +1 A=0
VCL “ My-0 SHEAR STIFFNESS
Mp=0
'MVAi A=+l B v M 9‘-:0 Sy, 1 3E1
\ Y Syag=t——|Mg=0 VAB™ Gl ?
T ¢ 1 1 4 A-+1
M,g—f M0 FIXED-END MOMENT
8~ -
[ ' g,=0 Mp =224 - 3£l
X M=\ MM =0 %
A=0
SYMMETRICAL MEMBER
SYMMETRIC DEFLECTION MOMENT STFFHiEss Sy s a2
¥ ¢ 8,=+1 MAB™ ¢t 1i5%02 2E1
Suap=| Myl 0y=~1 Syas™Smsa -7
0= ~0g=+1 A=0 (Symmetrical Member)
SYMMETRICAL MEMBER MOMENT STIFFNESS 147,
ANTLSYMMETRIC DEFLECTIO Sprapm——araE
. 9‘4 = +1 ‘M+'AB‘43 6E!
Syap=|Myffp=+1 Spas™Smaa 7
)= 0= +1 A=0 (Symmetrical Member)
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and

. .
M = — -
B S G = rEp [¢.44 O — ¢ap b4

+ (G4 = 6a4) T + 645 #'s — bas ¢'s] ........... (155)

The factors commonly used in the moment-distribution procedure, as de-
fined by the general slope-deflection equations (Eq. 15), are given in Table 1.

In the actual calculation of the basic end-angle changes ¢4, ¢np, baB,
¢4, and ¢'p, the procedure used by the author in Figs. 10 and 11 may be
simplified. Deflections need not be calculated at all. The end slopes are
simply equal to the “conjugate” beam-end reactions caused by the “equiva-
lent concentrated angle changes” treated as loads. Upward end reaction is
positive on the left end and negative on the right end. The equivalent con-
centrated angle-change loads should be calculated by the formulas given in
Figs. 8 and 5, and the alternate to the author’s procedure in Fig. 10 is presented
in Fig. 23. The results check those of Fig. 10. If a mechanical caleulating
machine is used in the computation, it would be convenjent to divide the mem-
ber into either five or ten segments. The calculation of end reactions is then
obtained by multiplying the equivalent concentrated angle-change loads by
successive decimal fractions, 0.2, 0.4, etc., or 0.1, 0.2, 0.3, ete., up to 1.0, in the
case of five or ten segments, respectively.

6N=L |

n : : )‘ : ; |
+18ﬂ<A : ’ E ; :
A ' ! f :

180 150 10 %0 60 30 0

i iz i3 H : Cd Common
L : ! 4 8 i i7 Factors
Ordinates to H
Moment Diagram
Ordinates to ; : : : H H
M Diagram —i80 =75 —40 —225 -12 =5 0 % ﬁ
£l : : H H : H i (]
Concentrated : : ; J ! H i
Angle Change Loads —5.:9‘6 —-80.8 _451'4 —-23.1 —-123 -5.2 -08 x ELIG
Reaction Reaction
atA 8Ll L atB
ggf ) LR XET, 2‘2
2756 by m 2Ly L 82
115 BA " 6x180 ~Elg 115
4.1 13.8
_09 " 135
+18L.1X 44~ =End Slope -52.1x 2 = End Slp
°  atA B

Fia. 23.—~AvTeknaTE PROCEDURE To Fia. 10 ror CarcuLaTion oF ENp Stores OnLy

The other angle changes ¢5s5, ¢’4, and ¢’'p (also a check on ¢aB) are ob-
tained by two additional sets of computation similar to Fig. 23. It should be
noted that in computing ¢pp and ¢4z (= ¢pa4) the signs of the results and the
sense of the applied moment at the right end of the beam will be reversed from
that shown in Fig. 11 to conform to the rotation sign convention used in this
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discussion. After the basic angle changes are obtained, they may be sub-
stitued in Eq. 15 or in Table 1 to provide the necessary basis for analysis
either by the slope-deflection or moment-distribution procedures, respectively.
These details will be obvious to one already familiar with structural frame
analysis.

The writer has discussed the application of the paper to structural frame
analysis in cases where direct stress in a member may be neglected in so far
as its effect on bending is concerned. The author's procedure is particularly
adapted to the computation of critical buckling loads under direct stress for
cases of nonuniform cross section. The method is clearly outlined by the au-
thor. The procedure furnishes the engineer with a simple method involving
only the processes of arithmetic, and thereby bears a relation to the elastic
stability theory of bars similar to that which the Hardy Cross moment-dis-
tribution method bears to older and more cumbersome methods of structural
frame analysis.

M. 8. KercHuy, JR.,2 Assoc. M. Aum. Soc. C. E.—The author’s paper is
another contribution to a distinctly American tradition of structural analysis
founded on the work of Hardy Cross. This tradition is characterized by a non-
mathematical solution of quite difficult cases in such a manner that the strue-
tural behavior is always evident in quantitative terms.

The writer would like to suggest a simple and convenient approximation
that he has found to be useful in a large variety of buckling problems, including
the lateral buckling of crane runway girders. The total deflection, wy, in the
strut analyzed in Fig. 17 may be estimated as soon as the deflection, w;, due to
the lateral load, is calculated and before the value of the critical load, P, is
determined. The assumption may be made that the shape of the bending-
moment diagram for the moments, P wy, due to the column load, is of the same
shape as the bending moments due to lateral loads.

If My is represented as the moment due to the lateral load and w; as the
deflection due to this load, then the deflection, w,, due to a moment,
P wy = P (w.- + wu)l is:

w; P (w; + w,)

W, = M e (18)
Solving for we in terms of w,:
- Wi
we = TP (17)
M.

A substitution of the values of w;, P, and M at the center of the strut gives:

w P _ 1,042 X 002

ML 100 = 0.2084; and

_ 1,042\ 1 ) _ 1,320 ¢\
“TTBEI \T—02084) = "8EI "=

% Aest. Prof., Structural Eng., Case Bchool of Applied Bcience, Cleveland, Ohio.
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The corresponding value from Fig. 17 has a coefficient of 1,306 so that the
approximation ig satisfactory for most problems. !

The critical buckling load for this strut determined in Fig. 12 also may be
estimated by the condition that Wi = w,, and

wo = w‘f;Lwo ........................ (19a)
and
P = %.L ......................... (190)

Substitution of values from Fig. 17 gives:

_10EI 960EI _
1,042 X1 ;7 B R R T TR

P

The corresponding coefficient from Fig. 12 is 9.87 so that the approximation is
in fair agreement. ’ . h
The author is to be commended for his simple yet thorough and rigorous
- treatment of deflection and buckling. This paper should dispel much of the
mystery that surrounds all but the most simple column problems;

Jonx B, WILBUR® Assoc. M. Am. Soc. C. E.—Professor Newmark’s
paper-has been stimulating to the writer, particularly since it places emphasis
on mathematically simple ‘approaches to. problems in elastic stability. Al-

though Professor Newmark shows that simultaneous equations may be used .

to insure that the assumed defiection curve of a compression strut is essentially

proportional to-its shape as computed elastically on the basis of the assumed
deflection curve, his detailed treatment is devoted to the substitution of a
method of successive approximations for the solution of simultaneous equations.

The writer solved the problem illustrated by Fig. 13 on the basis of five
simultaneous equations, and obtfained substantially the same results. This
solution was relatively straightforward, although the form of the simultaneous
equations was such that it was convenient to adopt a method of successive
approximations in their solution. Having successfully completed this solu-
tion, it was then decided to investigate the accuracy of simpler direct solutions,
based on two simultaneous equations only. Symmetrical cases only were
considered; otherwise three equations would have been necessary. The re-
sults of these relatively simple solutions were quite satisfactory, as is illustrated
in the following discussion. .

Consider first the case of Fig. 13. Assuming that the deflections of the
strut at the center and quarter points are § and ¢ §, respectively, the equivalent
concentrated Eﬂf -loads at the center and quarter points are computed from
the relations for parabolic loading given in Fig. 5(5). These loads, together
with the resultant net reaction, are shown in Fig. 24. By the moment area

 Associate Prof., Str ! Eng., Masa. Inst. Tech., Cambridge, Mass.
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method: ‘
PLé L PIL2s -
ad = TE—I(IIG+6)—4— = W(lla+6) .....(21(!)
and : ' A ’ ’ '

- PLé . 2L PL3 L - PL2§
‘6=Z§—E—I(11a+6)-2——EE—I(IOa+1)4 1—92E1(12a+11).(21b)
i P12 . '

Let 4 = STo¥ and Eqs. 21 become
a=AMla+6)................... .. (22q)
and
: l=A(2a+11)................. e (22b)
M _Ps
ET"ET -
— 1g
M Paj 2
ET=ET, E
. .s -y
&g §
: £
E
P Bl El [~
. a@m . B .
N r 2
- - L
TeE(10e+]) . Beil(as)
PL3
‘4851(110+6)
Fra, 24
1 P2

Solving simuaneonly: a=10707;, A= 048 = ET Hence, P, |

= 1;958%1 = 9_.816}E ! vs. T’LIE ! (exactly). ‘

Before applying this procedure to the case illustrated by Professor New- :
mark in Fig. 15, where I is not constant throughout the length of the strut, it
was convenient to develop equations for equivalent concentrated loads for
parabolic loading curves for the case in which the spans of the two adjacent
segments are not equal. Referring to Fig. 25, these equations are as follows:

lz ) .
Ry, = m[a (&) +b@h+ lz)(l:_+ B+eh (2l + 1)]...(23a)

and

A : -
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Assuming that the deflections of the strut at the center and the 0.2-points
are § and g §, respectively,

point is computed from the foregoing relations for parabo

resultant net reaction,

and

k4
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the equivalent concentrated E{ll

-load at the 0.2-
lic loadings, whereas

———

mmetrical Abput
S Ceénter Line ~——

-
-
-—

o o et
-
)

3L

(ED)

10

To0E T (3662-3.8)

PiL
400 £

SL
7 (376 a + 46.2) 10

Fia. 26

are shown in Fig. 26, By the moment-ares method, -

= PoL 2L _ _PIL*s _
4= gory BT6a+ 46252 < 000 2T (7526 + 92.4).. . (24a)

3 7 (182 a + 219.6)

P
,000 £

PyL
- W@GSG - 3.8)

WILBUR ON DEFLECTIONS AND MOMENTS 1197

Let 4 = ry ()I(:OL;,' 7 and Eqgs. 24 become

a=A(I520+924). ... VU (250)
and -

1=A(82a+21986)..... . . (25b)
Solving simultancously: o = 0.823; 4 = L - PL* P
olving simultaneously: o = 0.823; 863 = 10005 Heace, P,
_AO00 L 0 451

863 E7 ~ 48457 Ve T (exactly).

Since, for a strut composed of sections of constant £ 7 , the deflection curve
must be compounded of sine chrves, an interesting exact solution to the fore-
going problem may be made as follows, with reference to Fig. 27.

I~
2
aed
=
e =
s &
- § -
~
- =T
[
lt—xl g £
- \ -]
z \ E
-~
~ \ S
// = 1 \ )
4f_~_'___£____ \
1“‘-1,2‘—4
I
- —L3
< L,
Fae. 27

For the case under consideration, the true deflection curve, shown by the
full line, is composed of segments of the curves :

% = 6, 8in % ....................... (26a)
and
¥2 = 8;sin EL? ................... ....(260)
At the point of common tangency, where
x,=£%l"+21—ol“=110(5L|—-3L3) ............ (27a)
and
w2 (275)

W Gy A 1ay, _
yl—y:,dT‘=—,andm—mdﬁ‘,mnceh—IOI,.
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These relations reduce to

w (5L — 3 Ly) Ly

8, sin 10 —T— = 0g sin 5 j7SRRRERREERREER (28a)
B n Gl =3I _ & 7l
L €08 75 I =1, cos ¢ Ly (28b)
and
ax . T (5 L] -3 Lg) - 52 . 1rLa (280)

'L—zlSlnIﬁ . = IODQSIDBE ............
Dividing Eq. 28¢ by Eq. 28¢, A1 whence L; = —IL Eqgs. 28a
) ' YIA 0 1013 AT

and 28b become
EXCIPEE T N, )2

81 sin ST R FE— 5L (29a)
and
d; cos %%—I}i—@- = 4, Y 10 cos = \é_lﬁ% .......... (29b)
Dividing Eq. 29a by Eq. 205,
- Vl_Otan%(SLll:BL’) =ta.nrgl—1-0%:-..-. ......... (30)

and % = 0.675. Hence, I, = 1.481 L;. This gives the “reduced” length of
1
the strut under consideration. The eritical load is then given by

wEI _450E1

Por = 28T TR = I SERRRES

In the opinion of the writer, Professor Newmark has performed a definite
service since he has dissociated one type of problem in elastic stability from
the shroud of the formal solution of differential equations. It is to be hoped
that relatively simple methods of solution will eventually be developed for
other types of problems in elastic stability.

RawpE W. StewarT,2 M. AM. Soc. C. E.—Effective procedures for
determining the elastic curves of beams are presented in compact form by the
author. The paper has value in an engineer’s reference library since the
analyses demonstrated have heretofore been scattered in different treatises.
The use of progressive load, shear, and moment increments to establish deflec-
tions and the alinement of elastic curves is familiar in the analysis of arches.
An excellent demonstration of the use of the device termed ““linear correction
to moments’ (which, by analogy, is the same as “linear correction to deflec-
tions'’) has been presented by A. W. Buel, M. Am. Soc. C. E., and C. 8. Hill.»

2 Engr, of Bridge and Structural Design, City of Los Angeles, Loa Angeles, Calif.

3 **Reinforced Concrete,’ by A. W. Buel and C. B. Hill, The Engineering News Publishing Co., New
York, N. Y., 1906, Fig. 43, p. 140.
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It appears to the writer that a part of the paper dealing with beams of
variable section can be improved in analytical procedure and also that a rather
important deficiency in the author’s illustration of the use of his computations
justifies a rewriting of this part of the paper. '

To clarify and justify this opinion, a statement regarding the basic constants
of beam flexure is necessary. A basic constant is defined as being either a
simple constant quantity or & constant ratio between two variable quantities.
A constant that is more complex than a basic constant will be referred to as a
derived constant because it is derived by the use of two or more basic constants.

The basic constants of beam flexure are well illustrated by the dimensions
governing railway curves. A circular railway curve is completely determined
by the length of a tangent and the angle of intersection of the tangents. The
transition spiral often used at the end of a circular curve is fully determined
by the length of its tangents and their angle of intersection. If the over-all
length of the spiral curve is known (as the span of a beam is known), then one
tangent and the angle of intersection are sufficient. The basic constants govern-
ing the flexure of a beam that has no more than two supports are similar and
are ag follows, the distance between supports being known: '

(1) The basic stiffness of the left end of the beam. This is the ratio of
the moment to the angle of intersection between the tangents to the elastic
curve when fhe beam is hinged at the right end and a moment is applied at
the left end.

(2) The ratio of the length of one tangent to the elastic curve to the length
of the beam for the same condition of flexure as in (1).

(3) and (4) These are the same as (1) and (2), except that the left end of
the beam is taken as hinged and the moment is applied at the right end.

(5) The angle of intersection between the tangents of the elastic curve
when the beam acts as a simply supported beam subjected to its loads.

(6) The ratio of the length of one tangent of the elastic curve to the length
of the beam for the simply supported condition.

The first four constants are “beam constants,” which are independent of the
loading. The last two are “load constants,” which depend on the loads.

Of the six basic constants of flexure, only five are independent, since the
principle of Maxwell's theorem of reciprocal deflections (angular) will enable
any missing beam constant to be computed from the others. It is understood
in beam flexure that the tangents may be taken as equal to their projected
length in the unsprung beam.

An end slope is not a basic flexure constant. This can be seen from the
fact that in a cantilever beam the slope at the fixed end is known to be zero;
but this knowledge, combined with the length of a tangent to the elastic curve,
is insufficient to determine the curve. If, however, the length of a tangent
and the intersection angle between tangents are known, the curve is determined.

The Hardy Cross stiffness factor is not a basic constant because it is a
function of an end slope and also two basic stiffnesses, one at each end of the
beam.
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Much valuable time has been lost and is still being lost by engineering

designers through injudicious selection of flexure constants in analyzing the
various types of structures. The author's treatment of the beam in Figs. 10
and 11 would tend to encourage rather than correet this tendency. A revised

< L=6\
A - B
=180 S B — -
i E E : i :
Moments 180 150 136 90 60 30 0
I i [ 1 H H i H
s S A
Ordinates to Eﬂlniagram u}o ?5 4:;0 2:2.5 1:2 '5 o x ﬁ; .
c d Angle Changes - 696 808 414 231 123 52 08 x ﬁ; Taw2332=4
Moments of Angle Change ! : : : i | :
Loads About Left End §° ?03 828 5=9.3 492 26 48 Z=3129
' 1 1 1 H i M
t ! ! t 1 H
. i 3129 _ ' ' ;
Distance of Aslr.om Leﬂ!End - -2—?33 51.342 A : See Dilagram Beilaw.
! i : i H . i
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‘Tangent Spread= 5~ siz9 2608 2086 1565 103 5216 ¢
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Draw One for Each End of Bean.
13423 . Basic Stifiness =41 =0.772 (Relative)
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N 34521 H

Cross Stiffness Factor = 1.640 xBasic Stiffness = 1.267
(Carry-Qver Factor Right fo Left=2,548 +3.452-0.738)

Fra. 28

computation of the properties of this beam is therefore offered in Fig. 28, and
the justification for this revised computation is illustrated by Fig. 29. The
columns in Fig. 29 are the same members whose properties are determined in
Fig. 28. The deck is of constant section with relative stiffness as shown. The
sidesway moments and the appurtenant lateral force as shown in Fig, 29 are
computed by the following consecutive steps:

Write in deck traverse angles 1, 2, and 3. Multiply stiffness, 2.97, by
angle value, 3, to get moment 8.91; divide moment 8.91 by stiffness 1.485 to
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get column traverse angle 6. Add angles 1 and 6 to get bottom column traverse
angle 7; multiply angle 7 by stiffness 0.772 to get moment 5.404. Add all
column moments and divide by frame height to get lateral force. The effect
of any other lateral force will be in direct proportion. The lateral deflection
of the structure follows as a direct by-product.

_ P88 B_ 891 257 8.1
g = 1 2
@ 3 @
6
-
\
7

-
g 2

A0 Jm
7777 7,

Fra. 29

It can be seen that the foregoing computation of sidesway moments, using
basie constants, can be done in less than one minute, whereas computing these
moments, with the derived constants, which are the only ones mentioned by
the author, would take much longer, would give a less accurate result, and
would fail to give the deflection of the structure as a direct by-product. The
same situation would prevail with vertical loads.

The usefulness of the computation of deflections and elastic properties of
an individual beam is obviously increased by bringing the results into a form
that can be used for the quick computation of the deflections and moments of
a structure in which the beam becomes a member.

SteEFAN J. FRAENEEL? JUn. AM. Soc. C. E—Recently the writer was
called upon to investigate the stresses in a 125-ft derrick boom. Since such
long and slender members are subjected to considerable deformation which, in
turn, influences the stresses, it was necessary to determine the deflection of this
boom. The methods outlined in Professor Newmark's able paper lent them-
selves well to this investigation.

The boom (see Fig. 30) consisted of four angles—two 6-in. by 4-in. by 3-in.
angles, which formed the top chord, and two 4-in. by 4-in. by 3-in. angles,
which constituted the bottom chord. A preliminary investigation indicated
that the strengthening of the middle section (which was 59 ft long) with 3-in.
by 4-in. bars at the top and 3-in. by 2-in. bars at the bottom was advisable.
That is the section shown in Fig. 30, which was also used in the investigation
related herein. The section of the boom varied considerably outside the
middle part, as is shown by the variations in the values of I and y.

# With Eng. Dept., Pittsburgh-Des Moines Steel Co., Pittsburgh, Pa.
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A general view of the boom is shown in Fig. 31. The boom will be analyzed

in a horizontal position. Because of the fact that its cross section is unsym-
metrical, the neutral axis does not coincide with the geometrical center line,

I 48

] l \‘ 6"x4"x1"angle ,_/ j
.
5 2 g
< by 2
N -
g o
_ . Neutral Asls—7Y & .
- - o
] Geometrical Center Line—? f 3
3

26.955"

i_ Lo
1—3'5{ n Barj

Fia. 30.—SxcrioN mx Cantzr Pirr or Boom

Line of Action of Axial Load

Geometrical Center
'~ Line (Horizontal)

[ S ——~

J—W— 2.06"
5

>

N

>

: T 1 . Pin
3L_4x _SA_6h 7h 8 9\ 10A

125'=10 A ‘J.

Nl

Fra. 31.—GengeAL View oF 125-Fr Deraick Boom

the distance between them at any point being denoted by y. The line of
action of the axial loads is determined at the right end of the boom by the
location of the pin, and at the left end by the intersection of the boom line and

TABLE 2—VALUES OF %, ¥, AND I FOr VARtous VALUES OF A

Symbol 0 1 22 3x 4 B 6 7 8 9x 102
4 2.08 | 1.86 1.65 1.45 1.24 1.03 0 83 0.62 0.41 0.21 0.00
¥ —-8.39 | 1.13 2.27 | 295 2,85 2.95 2.95 227 1.76_ | 0.00
% 42,057 | 5,363 | 7,098 11,843 |1 1.843 11,843 1 ,8 11,843 | 7,088 | 3,387 | 5,071
I 12.4 I,| 1.59 Io| 2.00 Jo| 3.49 Ia| 3:49 Io| 3.49 Is| 3.49 Io| 3.49 Is} 2.09 Is| 1.00 Io| 1.50 I«

the vertical line of action of the load P. (It should be understood tkfat P
includes both live load and the left reaction of the boom due to its own weight.)
This intersection {which, of course, is imaginary) occurs for the case of the
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flat boom 2.06 in. below the geometrical center line. The distance at any
point between the geometrical center line and the line of action of the axial
load will be denoted by z. A summary of the values of z, y, and I for various
values of A is given in Table 2.

1600 Lb
1800 Lb
7100 Lb A l 2770 W
190.2
Lb per Ft 179.6 Lb per Ft 1605 Lb per Fi

ray

L #

L 5 26! 591 27

125'

Fi1e. 32.—Loaping Sxerca or Boou

‘Fig. 32 shows the loading of the boom due to its own weight. The dead-
load reaction at the left end causes an axial load of 51,250 1b, and the maximum
axial load due to live load is 64,950 Ib. In computing the deflections the
following conventions were adopted:

(1) Downward deflection is positive;

(2) Inch and pound units'are employed in the computations;

(3) The modulus of elasticity, E, is taken as 30 by 10¢ Ib per sq in.;
and

(4) The boom is divided into ten parts, so that 10 A =125 ft.
Three deflections are:

{a) 6w = deflection caused by bending moment due to the weight of the
boom;

() 4, = deflection due to axial dead load; and

(¢) & = deflection due to axial live load.

The following relations hold:‘

and

in which, Ap is the total deflection under the dead load, and A is the total
deflection under the dead load plus live load. The difference between Ap
and A represents the effect which the live load has on the deflection.
Determination of 6,.—The necessary computations are recorded in Table 3,
and no further explanations are required. Of course, it would not have been
necessary to compute the equiva.lent concentrated angle changes, since there

were no discontinuities in the E T ———-diagram, and the simplified method men-

tioned in Part II of the paper could have been used.
Determination of 8,.—This component of the deflection is the upward
movement caused by the moment that the axial dead load has about the neutral



TABLE 3.—DETERMINATION OF DowNWARD DEFLECTION

TENTR
Line Description
0 [ 1 2 3
Moment of inertia I (in.t) 42,057 | 6,363 7,008 -11,834
| —
I
1 Moment due to weight of boom 0 1.888 3.313 4.313
2 Distributed angle change [+] 351 469 365
3 C trated angle ch 312.2 432.0 388.8
4 Assumed average slope 1, 1,287.8 855.8 467.0
5 Trial deflection 1,600 2,887.8 3,743.6
i} Linear correction to deflection +147.7 206.4 443.1
7 Resultant defiection 0 1,747.7 3,183.2 4,186.7
8 Resultant deflection in inches = 5w 0 1.3 2,39 8
TABLE 4.—DETERMINATION
TENTE
Line Description
0 1 2 3
| .
2
Moment of inertia I (in.4) 42,057 5,363 7,008 11,834
1 [ Assumed deflection due to axial dead load, e 0 —0.02 —0.03 -0.04
2 | Moment arm (8w — (z 4+ ) — &) +-6.33 ~1.70 -1.56 -1.27
3 | Moment (51,250 times moment arm) <+325 —87.2 —80.0 —65.2
4 | Distributed angle change ~7.71 +16.26 +11.26 +5.50
5 | Assumed average slope —40, —23, —12.49 —6.99
6 | Trial deflection El) +82.90 +42,90 +10.15 +6.66
7 | Trial defiection (2) —0.84 +1.35 +0.94 +0.46
8 | Linear correction to deflection —~82.26 —74.03 —85.80 —57.58
9 | Resultant deflection, & 0 —20.78 ~45.71 —50.46
10 | Resultant deflection, & (1} -0.0223 —0.0342 —0.0378
ToTaL DEap Loap DEFLECTION Ap = Suw + &a
11 e 0 1.29 2.36 3.10
TABLE 5~—DETERMINATION
TENTH
Line Description
0 1 2 3
Moment of inertia I (in.t) 42,057 5,363 7,098 11,834
L
<
1 | Assumed deflection due to axial D.L. & L.L.,é 0 —005 T —0.08 -0.09
2 | Moment arm (6w — (z + y) — &] +-6.33 —1.73 —1.61 —1.32
3 | Moment [(51,250 + 64,850) X moment arm] +735 —201 ~187 —154
4 | Distributed angle change . ~17.5 +375 1| 1264 --13.0
5 | Assumed average slope - +13.9  +26.9
8 | Trial deflection (1 ~—247.85 —207.85 ~310.35 ~206.45
7 | Trial deflection (2, —1.46 +3.1. +2.20 +1.08
8 | Linear correction to deflection +249.31 +224.37 +199.44 +174.51
9 | Resultant deflection, § 0 —70. ~108.71 -120.86
10 | Resultant defiection, & 0 -0, —0.0814 —0.0906
Toran Deap anp Live Loap DEFLECTION A = 8w + &
11 NP 0 1.26 2.31 3.05
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Causep BY BeEnpINe MomeNT DUE To WEIGHT OF Boom (é,,)

Points:
factor
4 5 6 7 8 9 10
11,834 11,834 11,834 11,834 7,008 3,387 5,071
[}
10 A= 125 ft >
4777 4.925 4.741 4.237 3.188 1.760 0 106
404 416 400 358 449 1/E
300.5 411.3 395.7 380.2 445.7 1.5 ANE
67.5 —343.8 ~730.5  —1,119.7 —1,5654 —1,986.9 AE
4,210.8 4,278.1 3,934.3 3,104.8 2,075.1 500.7 —1,477.2 N/E
590.8 738.5 286.2 1,033.9 1,181.6 1,320.3 +1,477.2 N/E
4,801.4 5,016.6 4,820.5 4,228.7 3,256.7 1,839.0 0 NE
3.60 3.77 3.62 3.17 2. 1.38 0
OF 0, AND Ap
Points:
factor
4 5 6 7 8 9 10
1
——— 10A=125Ft Q
11,834 11,834 11,834 11,834 7,008 3,387 5,071
-0.04 -003 - | —003 —0.03 —0.03 —0.02 0
—0.63 ~0.24 —0.18 —0.43 -0.26 —0.60 0
~32.3 -12.3 —9.75 -22.1 -13.3 -30,7 0 10
+2.72 +1.04 +0.83 +1.87 +1.87 +0.08 0 1/E
- ~-3.23 -2 - +10.42 \E
-0.33 —4.60 -7.83 —10.23 —11.76 ~10.42 0 N/E
+0.22 +40.09 +0.07 +1.56 +1.56 +0.76 0 N/E
~49.35 —41,13 —32.90 —24.68 —16.45 —8.22 0 \E
—49.48 —45.64 —40.66 —-33.35 —~26.65 -17.90 0 N/E
—-0.0371 | .-0.0342 | —0.0305| -—0.0250 | —0.0200| —0.0134 0
(LN 8, TABLE 3 + LiNe 10, TABLE 4)
\
3.56 3.74 3.59 3.14 2.44 1.37 0
OF 0 AND A.
Pornrs:
= factor
4 5 6 7 8 9 10
11,834 11,834 11,834 11,834 7,008 3,387 5,071
1
10A =125 ft v-jf
~0.09 —0.08 —0.08 —0.06 ~0.05 —0.03 0
—0.68 —0.29 —~0.24 —0.46 —0.29 —0.62 0
—179.0 -33.5 —230 -535 —34.0 ~72.1 0 12
+6.68 +-2.83 +2.37 +4.52 +4.78 +21.3 0 1/B
58 +36.41 +38.78 +43.30 +48.09 .39 \E
—269.66 |—235.97 [—199.56 |~160.78 |—117.48 —69.39 0 74
+0.5 4-0.24 +0.20 -+0.38 4-0.40 +1.77 0 N/E
+1490.58 | +124.65 409.72 +74.79 +49.86 | +24.93 0 N/E
—119.41  |-111.08 —09.64 —85.61 ~67.22 —42.69 0 \E
—0.0805 [ —0.0834 | —0.0746 | -0.0642 | —0.0505| —0.0321 0
(Lixe 8, TaBLE 3 + LiNE 10, TABLE 5)
3.51 3.69 3.54 31 2.39 1.35 0
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axis. That this movement is upward can be ascertained from the fact that,
except at the left end, the line of action of the axial load is below the neutral
axis. The moment arm is 8, — (z + y) prior to the upward deflection &,
for which assumed values are given in line 1 of Table 4. The final moment arm
is then 8, — (z + ) — 8. In the case of point 52, for example, this is
3.77 — (1.03 + 2.95) — 0.03 = — 0.24. If the results do not coincide with
the assumed values of 8,, the procedure is repeated with corrected values.
At the bottom of Table 4, in line 11, the deflection Ap = &, + & of the boom
under dead load is given. .

Determination of 6.—This is the deflection due to both dead and live axial
loads. Its computation follows the same pattern as that of 8. The force
acting is 51,250 4+ 64,950 = 116,200 1b, and a set of values of & is assumed
and given in line 1 of Table 5. Again, if the results do not coincide with f:,he
assumed values of 3, corrected values are substituted. The values of A (which
is the deflection of the boom due to live and dead load) are given in line 11,
Table 5. Comparison with corresponding values of Ap shows that the live
load reduces the deflection by a small amount, namely Ap — A.

Avrrep S. N1Les,? Assoc. M. Am. Soc. C. E.—The method of computa-
tion described in this paper is very ingenious, and should prove to be a great
timesaver in the solution of many types of problems. Although the s,ut'hor
has shown applications to both beams and columns of single span, he has failed
to warn the reader that his method is not directly applicable to contim‘mus
members, for which the bending moments over the supports must be obtal.ned
by the use of the three-moment equation, the method of moment distri'butlon,
or an equivalent method. Perhaps the most awkward member of this 'type,
from the point of view of the stress analyst, is a continuous beam of nonum{on_n
section that is subjected to combined bending and compression. This is
handled most readily by the method of moment distribution, proper allowance
being made for the effect of the axial load when computing fixed-end momgl}ts
and the carry-over and stiffness factors. The computation of these quantities
for members of nonuniform section by previously published methods is a slow
and tedious procedure. The methods proposed by the author appear more
convenient for this work than any other that has yet been suggested, including
that of the writer and J. 8. Newell.”

In his numerical examples the author divides the beam into segments of
equal length. This greatly simplifies the work, and is nearly always allowable
when the transverse load (or ‘“‘angle change') can be completely represented
by a smooth curve. If this is not allowable, however, as when unequally spaced
concentrated loads are present, much of the advantage is lost. In fact, the
author's method becomes practicslly the same as that described,” the only

differences being in the method of recording the computations, and in the more

accurate, although more time-consuming, method of allowing for the curvature
of the loading (or “angle change™) diagram, which the writer treats as composed
% Prof., Aeronautic Eng., Leland Stanford Junior Univ., Aero. Laboratory, Stanford Univ., Stanford

University, Calif.
% “Airplane Structures,” by A. 8. Niles and J. 8. Newell, 2d Ed., New York, N. Y., 1838, Vol. 1, pp.
60,
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of straight segments. In most practical problems, however, the value of
the greater accuracy of the author's method of allowing for this factor is
questionable.

In computing ‘“‘equivalent concentrated angle changes,” the author uses
formulas from Figs. 3 and 5 that require division by 6, 12, or 24, depending on
the shape of the angle-change curve. It would seem simpler to include the
factor 6, 12, or 24 in the “common factor’” by which the moments or deflec-
tions are to be multiplied to get the final results. This would result in most of
the values in the tabulated computations being 6, 12, or 24 times as large as
those obtained in the method as described, but would not affect the final results.
Care would have to be taken, however, to use the same factor throughout the
span when part of the loading curve was straight and part curved, but in any
given problem it would be easy to multiply the formulas of Figs. 3 and 5 by

g or % in order to obtain a common denominator for all the formulas used.

In some of his examples (as in Fig. 1(d)) the author computes the actual
value of the shear at the left end of the beam before computing the shears at
other points, whereas in others (as in Fig. 1(e)) he starts the shear computations
from an arbitrarily assumed figure and makes a final correction to the bending
moments, if necessary. The writer has two objections to the latter practice,
although it seems to be preferred by the author. The first is that it is often
necessary to know the shears at various points along the span, and, in the latter
practice, it would be necessary to remember to correct the values originally
found to obtain the true ones. This could be done easily, and the objection
would be unimportant if it stood alone. The more serious objection is that
the practice eliminates a valuable internal check on the computations. If the
actual shear at the left end is first computed, then the moment at the right end,
computed by summation of the shears along the span, should be the same as
that stated in the formulation of the problem. If the two values are not in
substantial agreement, an error has been made. In the method of Fig. 1(e),
one does not know whether the necessary moment correction is due solely to
the difference between the assumed and actual shears at the left end, or whether
it is partly due to a numerical error of computation. Since the actual shear at
the left end can be computed quite easily, the check obtained justifies the little
additional work involved in using it.

The writer notes that the author has reversed the usual convention and
considers that loads are positive when they act upward. He heartily indorses
this practice. He wonders, however, why the same change was not made in
the conventions for slope and deflection. That would have involved the elim-

ination of the minus sign from the definition of ‘‘angle change” as — E£I ; but

that sign is not essential. It is there only to reconcile some independently
assumed conventions which proved to be lacking in logical consistency. It is
really much simpler to assume upward loads and deflections as positive. Then
one can differentiate the equation of the elastic curve four times, obtaining
successively the slope, bending moment, shear, and loading, without having to
remember to reverse signs arbitrarily at various steps.
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A related point is in connection with nomenclature. In his paper the

author terms the quantity, — % , the “angle change.” Actually, as he states,

he is using that expression as an allowable approximation for what mathe-
maticians call the ““‘curvature,” % » in which 7 is the radius of curvature. Since

the mathematicians already have given the quantity a name, why was it
Decessary to rechristen it? It might be considered awkward to spesk of a
“eurvature curve,” although the expression should be quite as clear as “angle-
change curve”; and “concentrated curvature’ should be as clear as “concen-
trated angle change.” What the author has termed “angle change’ is really
“rate of slope change,” and the latter term would really be preferable to the
former, if “curvature” is to be replaced by something else.

In studying the numerical examples, the writer was unable to verify one

of the author’s figures. In Fig. 15(a) the equivalent concentrated angle change

at the section of change in moment of inertia is shown as —404.90. This
appears to be a quantity to be obtained by use of the formulas of Fig. 5(a),
assuming the distributed angle-change curves produced to have ordinates either
one tenth of, or ten times, those of the actual curve, in the adjacent segments
of the beam. On thig basis, the concentrated angle change in question would

appear to be —(3 X 513.5 + 10 X 803.6 — 1 X911.0 + 3 X 91.10 4 10 X
80.36 — 1 X 51.35) X % = — 403.79. The actual difference betwesn this

value and the author’s is of no practical consequence, but it would be interest-

ing to learn whether the figure in the text was computed by some other method.

Although the author's paper is subject to the foregoing minor criticisms,
he deserves much credit for developing a valuable new tool for the use of the
structural engineer. ’

Camirro Werss,2? M. Am. S8oc. C. E—~The method outlined will un-
doubtedly be found useful in many types of problems other than those discussed
by Professor Newmark, and the determination of ordinates to influence lines
is one of these. It is readily applicable because influence lines can be con-
sidered as ratios between corresponding deformations, Furthermore, because
only ratios are required, the various “common factors” may be disregarded,
and scales may be adopted and changed to suit convenience at any step in
the consecutive computations, provided relative scales remain the same.
The moment diagrams are bounded by straight lines; therefore the results are
accurate for straight-line or parabolic variations of moments of inertia. For
other variations satisfactory approximations may be obtained.

The writer has computed influence lines for three typical cases, shown in
Figs. 33, 34, and 35, and a study of these caleulations will show readily the
relative ease of the work required. The conventional calculation methods
involve the same steps, but by applying the author'’s method the amount of
laborious arithmetical work is greatly reduced.

1" Designer, Bethiehem Steel Co., Fabricated Steel Conatr., Eng, Dept., Bethlehem, Pa.
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The influence diagram in Fig. 35 is obtained as the algebraic sum of two
elastic curves of the simple beam AD. The first elastic curve is for a unit
load at C acting downward. The second elastic curve is for a concentrated
load at B chosen to nullify the deflection at B. This is accomplished by
prorating the deflections due to a unit load at B acting upward. The procedure
may be extended to any number of supports. It may be of interest to note
that for a structure comparable to that of Fig. 35, but with vertical columns
continuous at B and C and hinged at their bases, conventional methods
furnished the following influence ordinates: 0.000, + 0.617, + 1. 00, + 1.186,
+ 1.04, + 0.775, + 0.448, + 0.161, 0.000, — 0.090, — 0.077, 0.000.

The constantly inereasing number of indeterminate structures which are
being built has made it essential for the designer to familiarize himself with the
method of moment distribution devised by Hardy Cross,® M. Am. Soc. C. E.
The author's method will provide great sssistance in the determination of
stiffness and carry-over factors, and in other less obvious ways.

Professor Newmark is to be congratulated for having produced a useful
and well-presented paper, which is a definite contribution to engineering design
methods.

A. A. Ersmin,® Assoc. M. Am. Soc. C. E—An interesting method of
making successive approximations for the computation of stresses and deforma-
tions is described in this paper. The method of successive approximations
is exceedingly useful when sections of members carrying loads vary along the
span length and when the sectional variation is difficult to express by a simple
mathematical formula. The problems solved by the author clarify the prac-
tical value of the method.

" A useful addition to the cases considered by Professor Newmark might be
the case of a member resisting a bending moment applied at an intermediate
section between the supported ends. This case may occur in the column that
receives load applied through & bracket. Applying the method of successive
approximations, the stresses and deformations in member AB, loaded with a
bending moment M at section C, were computed as shown in Fig. 36. The
member was divided into six sections. (Figure 36 follows on page 1812)

3 “Analysis of Continuous Frames by Distributing leed—End Momenta,” by Hardy Cross, Trans-
aclions, Am. Soc. C. E., Vol. 86 (1932), p. 1.

‘f” Associate Bridge Engr., Bridge Dept., Div. of Highways, State Dept. of Public Works, BSacramento,
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MyroN L. Gossarp,® Jun. AM. Soc. C. E.—The numerical procedure for
finding deflections and slopes of beams combines fundamental concepts of beam
elasticity and geometry, simplicity and accuracy of method, and clearness as
to beam action underload. These qualities, plus the fact that the procedure
follows closely that of computing shear and moment diagrams, certainly will
make it valuable to both structural engineers and engineering students. The
application of the method is particularly effective in the analysis of continuous
frameworks where it is necessary to determine certain beam constants and load
constants. The author’s procedure seems to possess all the advantages of the
method of the column analogy when applied to beams, and gives a clearer
picture of the beam action.® Also, the column analogy does not give the
deflections directly as does the numerical procedure.

The writer has used a special application of the fundamental Newmark
method to arrive at & procedure which, it is believed, is somewhat more con-
venient for finding stiffnesses, carry-over factors, fixed-end moments, and de-
flections of members of continuous frames—especially unsymmetrical members

18 Stress Analyat, Airplane Div., Curtiss-Wright Corp., Louisville, Ky.

3 “*Continuous Frames of Reinforced Concrets,” by Hardy Cross and N. D. Morgan, New York, N. Y.,

1832, pp. 46-47.
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that may be subdivided into segments that can be approximated by “standard’

beam forms. The “standard” beam forms are those shown in Fig. 37, where
the haunch curves may be either straight lines, half quadratic parabolas, or

MA(';\‘ N)m
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(e) TYPICAL NOTATION
F1c. 37.—Stanparp Braw Forms (Bram OvTLINES ONLY), WitH LoaD Tyres

half cubic parabolas, with vertexes at the shallow end of the beam. Following
Professor Newmark’s numerical pro;:edure, sets of curves similar to Figs. 38
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and 39 weré drawn for each case, using twelve equal divisions of beam length,
and based on the assumption that, at any section, the moment of inertia varies
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as the § power of the beam depth. This assumption seems to the writer to be
valid and sufficiently accurate for both structural steel (plate girder or I-beam)
and reinforced concrete (rectangular or T-beam) construction, inasmuch as the
exponent must lie between 2 and 3 for these types and some error in this respect
does not appreciably afiect the results of analyses.® Fig. 38 is for the case of
& moment applied at one end or the other end of a beam (Figs. 37(a) and 37(b)),
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L
giving the slope at A due to M, in terms of }éBI ( or the slope at B due to

M4, in terms of A.;lz'AIL) - For the purposes of a complete solution, similar

curves (not published) were constructed for the slope at A due to M, and for
the slope at B due to Mp. Fig. 39 is typical of curves giving the slope at A
3
due to a concentrated load P (Fig. 37(c)), in terms of II;—‘I;" . The curves of
Fig. 39 also give the deflections along the bearn due to M4 (Fig. 37 (a)), in terms
M, L2
EI,

those of Fig. 39 (not published) were prepared for straight-line and third-degree
parabolic haunches; and for the slope at B due to a concentrated load P (Fig.
37(c)), the latter set of curves also giving the deflections along the beam due to
Mp (Fig. 37(b)). Briefly, six sets of curves are needed for a complete solution
of a case of the type in Fig. 40, representing:

3 ""Continuous Frames of Reinforced Coacrete,” by Hardy Cross and N. D. Margs.n,. New York, N. Y.,
1832, pp. 3-5 and 169-171.

of s+ by Maxwell's law of reciprocal displacements. Curves similar to
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Case Description

(@) The slope at A due to M,

) The slope at B due to M4, which is equal to the slope at A
due to Mp

(c) The slope at B due to Mg

(d) The deflection at C due to M, which is equal to the slope at A
due to a concentrated load P at C

(e) The deflection at C due to My, which is equal to the slope at
B due to a concentrated load P at C

(6} The deflection at beam-center due to a concentrated load P

An example of what may be encountered and what may be done with the
aid of such data is illustrated in Fig. 40, from which all the information neces-
sary for a complete analysis of the beam as a part of a continuous frame is
derived. However, if deflection is not important or if “highly accurate”
deflection curves and influence lines are not required, a considerable amount of
the work can be eliminated. Fig. 40(a) shows the beam to be made up of three
elastic segments, L,, L, and Ly, with an assumed inelastic segment at each end.
The trapezoidal moment diagram for each elastic segment as a part of the whole
is divided into two triangular diagrams ; then end slopes and deflections for each
segment due to each of its triangular moment diagrams are taken from the
appropriate curves of the types of Figs. 38 and 39. The end slopes are added
at each segmental junction or “joint” to become the ‘“equivalent concentrated
angle changes” from which the average slopes and string deflections of the
joints are obtained as in the fundamental procedure. To the string deflections
are added the segmental deflections at selected points between the joints (at
center points in the example) to obtain the deflection curve. Figs. 40(b) and
40(c) show the calculations and deflection curves for M4 = 100 and Mp = 100,
respectively. In Fig. 40(d) the simple beam deflection curves are combined
to give curves of deflection for end moments of 100 with the far ends fixed
These may be used as influence lines for fixed-end moments. Fig. 40(e) is
included to illustrate the procedure for finding the influence line for beam-center
deflection which is always close to the maximum deflection in both simple or
continuous beams, By proper combinations of Figs. 40(b), 40(c), and 40(e)
the center deflection for any load condition on the continuous beam may be
found.

To complete the discussion there follow the caleulations for moment-~
distribution constants, fixed-end moments, and simple beam center deflection
for dead and live loads shown in Fig. 40(f). In the calculations involving
influence lines and distributed loads, the area under a curve is approximated by
finding the area under a parabola passing through three points, which area (4)

is given by o

4 = (a-{:-4b+c) ...................... (33)

| >
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In Eq. 83, a and ¢ are bounding ordinates of the horizontal length A, and b is

the center ordinate.

The beam constants are as follows:

Assuming positive rotations as clockwise, the rotation at one end of a
simple beam, due to unit clockwise moment applied at that end or the opposite

end, is— :

. L :
¢A4=+0.2042F1—°(34a)
- 01303'——1’—. . ' 34b
; ¢Ba = — AB03 g e (34b)
= + 0.1731 L (34c)
BB . y-J ARIARCTELEEELEREEREER c
and )
= —0.1302 -2 (34d)
¢aB = - 2 F T,

In Eqs. 34, the second letter of the subscript denotes the end of the beam where .

the moment is applied, Eqs. 34a and 34b referring to Fig. 40(b) and Eqs. 34c
and 34d to Fig. 40(c). .

Assuming that positive moments produce tension in the bottom fibers of a
beam, the carry-over factor is the ratio of the moment at one end to the moment
applied at the other end, when one end or the other is fixed:

¢an _ —0.1302
ras = 328 = o = — OB (350)
and -
$az _ —01302 g eap ... .(35B)

TBA = 4. " 02042

. For example, Eq. 354 yields the carry-over factor at end A when end B is
fixed, and Eq. 35b, the carry-over factor at end B when end A is fixed. For
the moment stiffness S, the moment at end A required to produce unit rotation
at end A when end B is fixed, is

1 EI,
(Sa)a = Paa —Tandan 9.40——L~— ............. (36a)

Similarly for the moment at end B required to produce unit rotation at end B
when end A is fixed—

1 . ElI
. S T e . 360
(Sar)a Y ———— 111 =F (36b)

From Figs. 40(d) and 40(f), the fixed-end moments (Mr) are computed as
follows.

Dead Load.—
. 030L
5— [1.5 (0.43) + ¢ (1.25) (1.63) + 1.97J w, = 0.538 w, L
0.2
020 L 107 4+ 4(1.62) + 098w, = 0393w, L
0.35 L
—5— [0.98 + 4 (1.25) (0.22) + 0] w, = 0121w, L
0.04 L (1.53) (0.22) w. = 0013w, L
Total = 1.065 w, L
L
(M;r),{ = 1.06510, L X m‘ = O.IOOWgD (—)..... . e
and . ’
0.30 L
== [0 + 4 (1.25) (0.22) + 0.86] w, = 0.098 w, L
9'365—1’ [0.86 + 4 (1.51) + 1.99] w, = 0.371 w, L
0.35 L
=5 [1.99 + 4 (1.25) (1.78) + 2 (0.53)] w, = 0.697 w, L
" 0.06 L (2.18) (0.27) w, = 0.035w, L
“Total ) = 1201w, L
(Mr)s = 1201w, L X s = 0.134 w0, I* ().
Live Load.— .
0.37 L
=% —[175 + 4 (1.83) + 0.98]w = 0.620w L
* 0.245 L
= [0.98 + 4 (0.40) + 0.05]12w = 0215w L
0.25w L (1.62) = 0405w L
.1.75 w L (0.46) = 0.805wL
Total = 2045w L
L
(Mr)‘ =2045wL X m= 0.193 w L? (—) ........
and
0.37 L .
=% [031 +4(118) + 1.99]w = 0433w L
.24
0250 1190 + 4(1.96) + 134120 = 0913w L
0.25 w L (1.51) ' = 0378wl
1.75 w L (2.0) =350 wi
Total = 5224w L

GOBSBARD ON DEFLECTIONS AND MOMENTS

(Mp)p = 5224w L X QL = 0580wl (—).........

.00

1219
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From Tigs. 40(e) and 40(f) the simple beam center deflections are computed
as follows.

Dead Load.—
% (1.5 (0.0021) + 4 (1.25) (0.0098) + 0.0161] w, = 0.00341 w, L
% [0.0161 + 4 (0.0187) + 0.0178] w, = 0.00453 w, L
043%3—_11 [0.0178 -+ 4 (1.25) (0.0116) + 2 (0.0031)J w, = 0.00478 w, L
0.04 L (1.53) (0.0011) w0, = 0.00007 w, L
0.06 L (2.18) (0.0016) w, = 0.00021 w, L
. Total = 0.01300 w, L
L3 w, Lt
8¢ = 0.01300 w, L X 77~ = 0.0130 TP (39)
Live Load.—
0.37 L
=% [0.0112 + 4(0.0179) + 0.0178]w = 0.00620 w L
0'2‘25 L 0.0178 + 4 (0.0138) + 0.008] 2 w = 0.00662 w L
0.25 w L (0.0187) = 0.00467 w L
1.75 w L (0.0145) T =0.0254 wl
Total = 0.0429 w i
L wlA
8. = 0.0429w L X vy o 0.0429 TP (40)

Lack of space prevents the inclusion of the various curves prepared for use
in the discussion of Fig, 40. In other respects, however, the writer has entered
into more detail than is necessary in most applications of the numerical pro-
cedure because the emphasis of the Newmark paper is on a technique. Tech-
nique may rightfully assume prominence in problems such as this.

RoBERT A. WiLLiaMsoN,® JuN. AM. Soc. C. E.—In members subjected
to combined axial and bending loads (commonly called beam columns) the
effect of secondary moments caused by end thrusts cannot be ignored safely
when the compressive load is any appreciable percentage of the eritical buekling
load. This is plainly demonstrated by the results of Fig. 17.

When the beam column is one of a series of members comprising & continu-
ous structure, the values of the elastic constants and fixed-end moments re-
quired for the usual moment-distribution analysis depend, in part, on the
magnitude and sign of the axial load.

For the case of variable section, evaluation of these quantities is greatly
facilitated by the use of Professor Newmark'’s procedure, details of which are
shown in Figs. 41 to 44, inclusive, using as an example the beam of Figs. 10
and 11 subjected to an axial compressive load.

H Stress Analyst, Vega Aireraft Corp., Burbank, Calif.
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Determination of the elastic constants requires the computation of the end
slopes at A and B (Fig. 41) due to end moments applied separately, first at A,
then at B, including the effect of the given axial load, P, in both cases, assuming
the beam to be simply supported. Initial deflections, w;, and corresponding
end slopes were obtained from Figs. 10(c) and 11(d). The first trial is shown
in detail for end moment M, the intermediate trials being omitted. Final
results only are shown for end moment M.

e 6A=L
H ¢ Lb per Ft
P ; ; . P
g B
! . ( 7 Common
I 1 2 3 4 5 , 6 Factors
; } Detlections for Triangular Load with P = 0 :
Ordinates to Load Diagram 1] 5 —50 7 S0 T 150 ~180 . /180
Assumed Avernge Shear, Part (1) | 180 ! 160 | 90 P00 1120 1270 § T gMI80
Trial Moments, Parts () and (2) 0 180 330 420 420 300 30 q\/180
Linear Correction to Momentas 0 -5 -10 -15 ~20 —~25 ~30  gA¥180
Ordinates of Moment Diagram 0 175 320 405 400 275 0 on/10
Ordinates to Anzla-Chunglg iagram 0 —87.6 —1067 ~—1013 <800 —45.8 gA%(180 E 1)
Assumed Avarage Slope, Part (1) 2376 | 1500 i 433 | —580 { —1380 ! —183.8 @ N(180 E Io)
Trial Deflections, Part, (1) 2375  387.5  430.8 3728 2348 5LO0 gAY(180 E 1.;
Deflections, Part (3) [ -73 =88 —84 —67 —38 NS0 E I,
Linear Correetion to Deflections 0 —85 170 —255 —340 —425 —510 oNY(ISDEL)
Defleotione, w¢ 0. 2217 36186 3969  332.1 188.5 0 gM/(180 E I.)
End Slopes 801=22174+174 . | —188.5-81=~196.8 ¢M/(I80E I,
i H H i
j i i i ElL
(b) Deflections for Trlangular Load with P = 0.2 53t
! H H
1 i | i
Deflections, wi < 108 1808 1086 1861 gis aMY(90 E 1,)
Assumed wa 0 381 62.1 68. 57.2 324 gM/(90 E L)
100 == 0 + wa ¢ 14900 2429 2669 2233 1267 0 gMBOEL)
Momeats due to P 0 3 60.8 66.9 56.9 31.7 aMN,
Distributed Angle Changes 0 —187 —203 —-167 —112 —53 M9 B I.;
Assumed Average Slope, Part (1) i387 i 20 } —03 § ~170 | —282 | —335 gAY(90 E I,
Trial Deflections, Pu’?lr) 0 8 587 584 44 132 —203 ¢M/(90E L)
Deflections, Part (2) - 0 —-1§ ~L7 —14 —09 04 0 gM(NEL)
Linear Correction to Deflections 0 34 8.8 10.2 13.5 16.9 203 gM/(S0E 1)
Deflections, w, 0 405 63.8 673 540 20.7 0 gM/(00E L)
Final Deflections w, Civing , i H i ; i
Same Deflections w' [ 40.7 63.8 67.0 53.8 20.8 0 gM(00E L)
Final w, 0 1518 2448 26556 2199 1238 0 gM(QEL)
Final Moments Q 125.4 2213 260.0 255.0 1684 0 gM
Final End Slopes 1642 { i t : I ~1288 gM/(QEI)

Fia. 43 —Derisctions anp Benpive Mouants ror TRIANGULAR Loap Cousmvep witn Axur CoMpRESSioN

Fig. 42 illustrates the determination of stiffness and carry-over factors and
rigidity from the results of Fig. 41 by a method similar to that of Fig. 11{c).
(The formula for end moments in Fig. 42(c) is easily derived.®)

For determining fixed-end moments the additional quantities needed are the
end slopes of the heam, assumed simply supported and subjected to the given
lateral and axial load. Fig. 43 shows the calculation of these values for a
triangular lateral loading condition, intermediate trials being omitted.

The computation of fixed-end moments, shown in Fig. 44(a), utilizes the

data of Figs. 42(a), 42(b), and 43 and the same general principles previously

¥ ""One Story Frames Analyzed by Moment Distribution,” Concrete Information Bulletin No. 8 T 42,
Portland Cement Assn., April, 1941, pp. 8 and 9.
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applied in the determination of the elastic constants. In Fig. 44(b) the re-
sultant deflections and bending moments for fixed ends and axial load are
tabulated.

As a check, the bending moments of Fig. 44(b) are used to obtain the results
of Fig. 44(c), the computed deflections and end slopes differing from those of
Fig. 44(b) by a maximum of about 2%. Much of the work was done with a
5-in. slide rule, the remainder with a 10-in. slide rule. ’

e 6A=L
ElL \ q Lb per Ft
<Pt-0.25—gnx ; T TIIT] llllll”f””[”'/ p.o,zs%n
- - — ! ] > —
I e S e b 77
E, ! ! : ! : Iy
{6) Fixed-End Momenta Pmmon
End Slopes, Beam Simply Supported (Fig. 43¢8))
. End Rotatlon Producing Fisity at A, with B Clamped 7 OMEL)
ElL Y Reeulting End Moments ¢ ONE Ly
-z.xsoqu-x.xas—r(-z.aul’g—,. —2.180g M (~ 0.851) = 1879 g2 _
0 End Rotation Produeing Fixity at B, with A Clamped
) . 1427 oW(EL)
Resulting End Moments
148000 = — £281 g3t (— 0.341) &mﬁ(l.mi) =— 4381 g0
x EL
Fixed-End Moments
~0720g) = Py Fpe= —2402g21
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Deflections due to Triangul 0 303" 48 531 a9 a8 H 22«58%5’13
Resultant Defiections 0 3
Remultant Bod Slarms o M8 w4 ;3 T ORED
Momenta due to Fx 130 -1 121 —8 —gf _gi 0 exy/ig
due to F 0 U3 -2 284 38 40k 433 Saerish
"Moments due to F4 + Fg 0 248 333 —392 24 - —433
Moments dus to Triangular Load [] 250 443 538 —§13 ;4347) 0 g;\‘:}’l‘g
Resultant Moments -130 T 8  —103 —433 gm0
j i i i i
{ ': ; | i j
i H H
1 {c) Check Valuea of Deflections and
| , Oblained from Above M:»:;:enE:d s“:w ;
Deflections 0 32 W4 BB 65 28§ aamEL
End Blopea -30 ; ; ; P 09 TMmEl

Fia. 4. ~Frxeo-Ernp M Dzr , AND B Moumxra
. Cousinxp wirs Axiat Cosrression vou Taimaziin Iom'

In all cases where the value of w, for the first trial was computed from Eq. 4,
a total of two trials gave a value of w's 80 close to the value of w’, from a third
trial that the extra trial was unnecessary. The effect of omitting deflections
Wq, computed from Eq: 4, was to increase the required number of trials to three.

In comparison with other procedures devised for this type of problem,
Professor Newmark’s method affects savings in time and labor, gives equally
good results, and is more easily checked.
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1. OrsrerBrom,® M. Am. Soc. C. E—The “numerical procedure,”” pre-
sented by Professor Newmark, for computing a variety of important elements
in structural design constitutes quite an important tool in the workshop of the
practicing engineer. Fundamentally there is nothing new in his basic idea,
but it has taken both vision and & live imagination to see how neglected this
idea was and how extensively it might be put to work.

As very often is the case, the father of a new method knows his child so
well that he can describe it only indifferently. Thus it would have added to
the usefulness of the paper, if the relationship between the differential equa-
tions referred to in the Synopsis and the new method had been more clearly
outlined or described. This would have given the reader a better chance to
generalize and extend the procedure. It also would have helped to make
reading and understanding easier if there had been fewer: “* * * the calcu-
lations are self-explanatory.” The procedure can be discovered after some
work; but if new ideas are to be spread and not forgotten they must first be
promoted. To use an old sales slogan: “A new thing will not sell itself ; it

requires a good sales talk." At least one illustration, perhaps two or three, -

should have been explained, point for point, with nothing omitted. Then the
remainder would have followed easily, and new problems also could have been
set up by the novice.

The ultimate service and grace of the method are the same either way, but
enthusiasm would have been greater if the invitation to a delightful program
would have been more convineing. A delightful program it seems to be, if one
may judge from the many fields to which the method has been extended—
moments, slopes, deflections, point loads, uniform loads, variable loads, axial
loads, critical loads, and buckling loads. What more can mere man desire—
in one single paper!

The reaction formulas for the variable loadings by N4dai and Southwell are
good to have; and better yet it is good to be shown how they may be used to
advantage by the Newmark method. The buckling formulas and how they.
are to be used are equally interesting.

The writer has not yet had & chance to apply Professor Newmark's method
to any commercial problems, but he can well remember many problems from
his past experience for which he would have been grateful to have this new
information; and he feels certain that many of the younger engineers will be
equally grateful when they are faced with similar problems.

C. W. Dunmam3 M. Am. Soc. C. E—The method of solving certain
problems of deflections and buckling loads by successive approximations, pre-
sented in this paper, is based on the obvious and sensible idea that moments
and loads cause deflections and deformations of the members subjected to them,
and, as so often stated by Hardy Cross, M. Am. Soc. C. E., and others, both
statics and geometry must be satisfied. In other words, the deformations and
the causes of those deformations must be consistent with each other. If a
shape of the deflected member is assumed, but moments accompanying those

% Charleston, W, Va.

38 Associate Prof., Civ. Eng., Yale Univ., New Haven, Conn.
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deflections are not the same as the moments acting on the member, then of
course the assumed shape is wrong. However, it is obvious that sufficient data
may be found from the first trial to make a better guess next time, thus arriving
at a shape that is more nearly correct.

As for the practicability and importance of the author’s method, the writer
has tried to look upon it as a tool for the designer to use and has tried to see
it through the eyes of the ordinary man in a typical engineering office.

If it is desired to introduce a new method of analysis, or a modification of
an established one, many things must be considered, some of which are:

1. If the ordinary reader cannot readily grasp the general features and if he
thinks that the procedure is very complicated, he is not likely to give it serious
study.

2. If he cannot check parts of the calculations when he does study them
seriously, he will not be sure that the method ean be trusted in new creative
work of his own; hence he will not use it.

3. If he is to learn to use a method as a tool in his work, it must be simple,
easy to understand, general in its application, and easy to remember and
to apply. .

4. If he is to develop facility in handling the procedure, he must apply it.
This he will seldom do unless the method, as a tool, is applicable for solving
problems with which he frequently comes in contact and which he must solve.

The writer will try to state his reactions to Professor Newmark’s proposed
method by discussing how it seems to meet the four preceding requirements:

1. A study of the paper gives the impression that the presentation makes
the method appear more complieated than it really is. It is natural for any one
who writes to believe that what is obvious to him is also obvious to the reader.
However, such is not the case in many instances. It is unfortunate that the
author did not give a little more explanation of the tie-up between his use of
the “fictitious stringers” in computing moments in beams and the application
of this procedure to the calculations of slopes and deflections when angle
changes are used as loads. Of course, the explanation given by Professor
Cross and N. D. Morgan, M. Am. Soc. C. E., is cited, but one illustrative
problem showing this basic method more in detail would help to make the
paper more complete in itself although risking repetition to the expert theorist.
By its very nature, the paper is one that cannot be read casually and yet be
appreciated. If the difficulties which it avoids were called to the reader’s
attention more forcefully, it might encourage him to give the paper the serious
study which it deserves.

2. The writer decided to check most of the detailed work in the illustrative
problems. In doing so, he found many “hops, skips, and jumps’ which are
likely to be confusing to a student—or, at least, hurdles which may handicap
him in developing complete understanding of the work and confidence in his
own ability to apply it independently. Some points which may be useful to
others are listed below:

(a) In Fig. 6, the symmetry of shape and the fact that the tangent to the
neutral curve is horizontal at the center of the span enables one to split
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the concentrated angle change of ~ 46 into two equal parts, the left one
being positive because the tangent in that section slopes downward
toward the right whereas the other side is the opposite. In Fig. 6,
also, it might be advisable, as a first case, to label the last two lines of
the ealeulations for deflection as follows: Average Slope (Shear); De-
flection (Moment).

(b) A more detailed solution would be helpful in Fig. 7.

(¢) In Fig. 10(a), the value 69.6 in the computation of the total end slope is
derived by using Fig. 5(a) with values of the ordinates to the angle-
change diagram. '

(@) In Fig. 18(a), it might be well to give the reader some idea of how to
make his first guess of the assumed average slope, Part 1. Here a good
assumption would be about half of the sum of the distributed angle
changes. However, in Fig. 19(a), trial appears to be the only way to
determine a suitable starting value.

(¢) The force 2 P in Fig. 19(a) should be shown clearly to be applied at the
fourth division point. It would also be helpful to show the following
for the computation of moments, as for the value 175 at the first division
point: The rotational moment due to the deflection of the point of
application of 2 P is 2 P (1,000 a) clockwise; the end reaction (vertical)

due to this moment is 2 P (1,000 @) + 10 A = 200 f;\_a acting counter-
clockwise; and the moment at the first division
= P (375q) — <200¥) A=175Pa.

(f) It would be helpful if the author used specific numerical cases for Figs. 19
and 20, showing how to derive a scale for the value of a. '

3. The general method shown in the paper is really simple and readily under-
standable. However, it seems desirable to adopt one standard set of details of
procedure rather than to show special short-cut methods for particular cases.
A thorough understanding of the basic method is desirable. If it can be
mastered thoroughly, one need seldom worry about the fact that a modification
of it may be more efficient in a special case. It is wise to have the men jn an
office able to use basic procedures cofrectly and to be able to check each others’
work without undue disputes as to refinement of methods. Furthermore, the
assumptions that must be made in practical work regarding magnitudes of
loads, their directions, their points of application, conditions of end restraint,
original straightness of members, span lengths, and the properties of the
materials introduce so many approximations that it seems unnecessary in most
cases to refine the calculations for curvature of loading diagramns when the
straight-line approximations may be far more correct than the basic data from
which the computations are started. Would it be more beneficial to confine
the method to the use of substitute straight-line moment diagrams and to
illustrate its application more fully by numerical cases? This might make it
very easy to remember and to apply. The arrangement of the caleulations
(bookkeeping) is very simple and satisfactory.
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4. It appears that the proposed method is useful i determining the de-
flected shapes of members under certain assumptions. However, this is not
generally important except in special cases. As for jés use in designing columns,
it seems to the writer that the buckling loads are seldom of ‘great interest to
the designer of ordinary structures although they may be important in the
design of machinery, airplanes, and similar structures requiring special refine-
ment and care in their design. In ordinary structural work, the designer
generally selects a tentative member because of various Jpractical reasons which
make it seem desirable, or he chooses one by using various approximations, and
then he analyzes it to prove that it is satisfactory for the loading conditions
under which it must act. Generally, he is not interested in its ultimate buckling
load. Therefore, the field of usefulness of the proposed method may be rather
limited.

However, the author is to be congratulated upon developing such a simple
approximation for the solution of problems. When .they do arise and the
designer must meet them, he will need such a handy tool and he will need
it badly. »

N. M. NEWMARK,¥ Assoc. M. Am. Soc. C. I5.—The suggestions, criticisms,
and examples of the application of the numerical procedure to specific problems
that have been given by the discussers of the paper are appreciated. .

The use of the procedure to obtain elastic constants for beams is illustrated
by Mr. Johnston. His suggested procedure is applicable to problems in which
deflections are not desired, but where end slopes are required and are deter-
mined from the equivalent concentrated angle-change loads. In this way the
procedure can be used to determine relatively accurate values for elastic con-
stants with a comparatively small number of segments in the length of the beam. -

Influence lines for fixed-end moment may be obtained from the deflection
curve for a beam with a unit rotation at the end, by use of the so-called Miiller-
Breslau principle. Consequently, it may be convenient often to compute de-
flections even in problems such as those considered by Mr. Johnston.

Professor Ketchum has suggested a way of estimating the additional de-
flection due to the end thrust when a bar is subjected to lateral load and end
thrust. His procedure amounts to assuming that the buckling configuration
of the bar is the same in shape as the deflection’ curve due to the lateral load.
For more or less uniform distributions of loading his approximation is reason-
ably good and leads to fairly accurate results.

In order to correlate Professor Ketchum's procedure with that suggested
by the writer, one can determine an approximate value for the critical load
from Eq. 19b, as the average ratio between the moment due to the lateral load
and the deflection due to the lateral load. In order to estimate the additionsl
defiection to be used in the numerical procedure, Eq. 4 can be used with the
approximate value of the critical load determined from Eq. 195. In many
cases this will permit a problem to be solved without going through the routine
of determining the critical load first, and therefore the suggestion is an impor-
tant addition to the paper.

37 Research Asst. Prof., Civ. Eng., Univ. of Illinois, Urbana, Iil.
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The use of simultaneous equations in solving the numerical problem was
mentioned by Professor Wilbur. Although simultaneous equations can be
written for the calculation of the deflections in a bar loaded with lateral loads
and end thrusts, in general it is neither convenient nor desirable to write
these equations. In the few cases where the numerical procedure does not
converge, it may be desirable to have recourse to the equations. The fol-
lowing procedure will illustrate the way in which the equations may be written.

Let m — 1, m, and m + 1 be three neighboring points on the bar, at a
distance X apart. The following notation is used, in which the subscripts refer
to the particular point on the bar:

(wi)m = deflection due to the lateral load and the initial configuration,
~ ab point m;
(wa)m = additional deflection at point m due to the axial loads; and
(E I)m = value of the product E I at the point m.

The change in slope at point m is equal to the equivalent con-
centrated angle change at m; but the added change in slope is the quantity

(Wadmis — 2(2;:“)"‘ £ Wadns 1 ghe moment at point m due to the axial load

P is P[(0)m + (wa)m], and if the angle-change curve is a smooth curve, the
equivalent concentrated angle change at point m is the quantity

_PX [ (e)mts + WIner | 1o (Wedn + W) | (Walmos + (w.-)m_a]
12 (B Dy (E Dm (E D

For axial loads, applied at other points than at the end of the bar, the

expression for moment is changed, and, where the angle-change curve is not a

" smooth curve, the equivalent concentrated angle changes are somewhat

different in form. The procedure for such cases is not essentially different

from that described herein.
Equating the change in slope and the equivalent concentrated angle change

at each point on the bar leads to a set of linear equations for the unknowns w,
for each point, since all the other quantities are known. :
The equations are of the following form:

P2 10 P )2 Pz
- [1 + 12(E'T),..T,J (almss + [2 - ‘12(‘E‘I')';] (@e — 1+ e
P2 10 P A2 Pz
X (Wolm—1 = T2E Do (Wdmir + 2ED. (0s)m + BED (Wi)m—1- . (41)

Since there are as many equations as unknowns, Egs. 41 can be solved for
the additional deflections w,.

When the values of w; are zero at all points, there is a problem of pure buck- ‘

ling, and the equations are homogeneous equations which involve only the un-
knowns w, and P, with the constant terms being zero. In order that the set
of equations may have a solution different from the obvious one with all the
quantities w, being zero, the determinant of the coefficients must vanish. This
leads to an algebraic equation for P in which P appears to some power equal
to the number of points on the bar that can deflect. The solution of the
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equation yields the critical values of P corresponding to the different modes
of buckling. The lowest value of P ig generally the only one of interest,

From this diseussion the reader may be able to see why it is desirable to
use the method of successive approximations which avoids dealing with the
equations,

Professor Wilbur has given formulas for the equivalent concentrated load
when the loading curve is divided into segments unequal in length. These
formulas are expressed by Eqs. 23a and 23b and refer to Fig. 25. Insome appli-
cations it is desirable to have a formula for the magnitude of Ry, which was
not given by Professor Wilbur. This quantity is defined by the following
equation, using the same notation that was used by Professor Wilbur.

l
Rap = 12 lz(lll Fiy [alBUL + 41) + b(l, + LYh+21) —-¢ 1%]. . (42a)

The equivalent concentration at point b, namely, R, which is equal to B, + Ry,
may be simplified to the following form;

bt r r
B @0+ 0 -0+ L6 - o). .. a2)

In general, it i3 not convenient to use different lengths of segments in the
same problem although in some cases it may be desirable to use segments of
one particular length for part of the beam and of another length for the re-
mainder. In such cases, one can use the formulas that apply to segments of
constant length in order to obtain the equivalent concentrations, by working
from both sides at the point where the segments change in length.

The use of segments of different length always can be avoided by the simple
expedient of calculating the proper equivalent concentrations at the chosen
division poin{s to account for the actual conditions in the segments between
division points. A simple example of such a procedure is shown in Fig. 45,
in which moments are calculated for a given distribution of loading. The
same type of procedure is used for caleulating deflections from angle changes.

Regarding the caleulation of the critical load for a bar composed of seg-
ments of different moments of inertia, Professor Wilbur has given a correct
analysis by means of the usual formal solution of the differential equation.
However, it is precisely such an analysis that the writer sought to avoid with
the numerical procedure. In a relatively simple problem it is not too compli-
cated a matter to solve the differential equation. For complicated variations
in the moment of inertia, however, the formal solution of the differential equa-
tion may not be convenient. Even in this problem, the determination of the
critical load requires the solution of a transcendental equation which may
take considerable time for an engineer unaccustomed to solving such problems.
For practical purposes the results so obtained are not of any greater accuracy
than those given.by the numerical procedure.

To summarize: Special problems can be solved by use of procedures such
as those illustrated by Professor Wilbur, but a different technique is required
in each case. With the numerical procedure only one technique is required
and it is applicable to all problems.
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Mr. Stewart illustrates the use of the numerical procedure in computing
constants to be used in his particular method of frame analysis. The writer
cannot concur with his statement concerning ‘‘basic’ constants of beam flex-
ure. The distinction between “basic” and “‘derived” constants depends en-
tirely upon the point of view of the person making the analysis. In one pro-
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cedure certain constants may be “basic” and in another procedure entirely
different constants may be “basic.” From the writer's point of view, the
stiffness and carry-over factors in Professor Cross’ moment distribution pro-
cedure are fundamental and basic constants from which any other constants
used in other methods of analysis can be derived by simple equations. One
can determine these constants by experiment or by analysis—by experiment,
preferably, in cases where there are marked departures from Hooke’s law or
where there is slip at joints or other phenomena not readily amenable to
analytical treatment.

However, it was not the object of the paper to discuss the merits of dif-
ferent methods of analysis of frames. The procedure can be used, as Mr,
Stewart himself has shown, to compute the beam constants for any of the
methods of analysis.
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Mr. Fraenkel’s use of the numerical procedure in his analysis of a derrick
boom is interesting. It can be seen from his analysis that the effect of the
longitudinal force in the boom on its deflection is relatively negligible. This
might be estimated in advance, as a very rough preliminary estimate of the
critical load for the boom could have been made by assuming some equivalent
constant moment of inertia, say, that in the central section. Since the ratio
of the actual end thrust to the critical end thrust is very small, the effect of the
end thrust on the deflection must be small also, '

In connection with Mr. Fraenkel's discussion, it should be noted that the
effect of longitudinal thrust cannot be superposed on the effect of lateral loads.
Moments must be computed for each complete loading. That is, the effect
of live loading cannot be determined from the live loading alone, but must be
determined by computing the difference between the effect of the combined
dead and live load and the effect of the dead load alone.

The writer wishes to thank Professor Niles for his kind remarks concerning
the numerical procedure. As Professor Niles states, for continuous beams the
numerical procedure is not directly applicable without some additional work,
However, one can compute constants for use in any of the standard methods of
analysis for eontinuous beams—for example, moment distribution, the three
moment equation, or the slope deflection method. Then, by use of any of
these methods, one can compute the bending moments over the supports.
When the end moments are known, the deflection eurve for each span can be
obtained if it is desirable to'do s0. When the members are subjected to axial
thrusts as well as lateral loads, the calculation of the beam constants is facili-
tated greatly by the use of the numerical procedure. Mr. Williamson has
indicated ably an application to such a problem.

It is always possible to use segments of constant length in the analysis,
even when unequally spaced concentrated loads are present. This is illustrated
by the problem solved in Fig. 45. Where discontinuities in section occur be-
tween division points, one usually can estimate reasonably well the equivalent
concentration to use at the division point. When formulas are desired, they
can be derived readily by consideration of the sub-stringer between division
points. If one finds the equivalent concentration on the sub-stringer at the
point of discontinuity (usually by means of the equations applying to segments
of unequal length), one then can determine the sub-stringer reactions due to

‘the equivalent interior concentration and proceed from that point with seg-

ments of equal length. However, in most cases, taking short segments may
make it unneeessary to consider the discontinuities between the division points.

In most practical problems one can use the short-cut procedure for making
the correction to the moment diagram without serious error. It is only when
a relatively small number of divisions are used that it is necessary to compute
the equivalent concentrations and to use them instead of the ordinates to the
loading or angle-change curve.

As Professor Niles has indicated, the formulas for equivalent concentra-
tions require division by certain factors. In his numerical problems the writer
has taken this factor as a part of the “common factor.” In many cases it is
very convenient to do so; in others it is worth while to compute the actual
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equivalent concentration merely to prove to one’s self that this quantity does
not differ materially from the ordinate to the actual distribution curve.

The writer has no liking for any particular convention of signs. In his
own work he uses different conventions at different times. Since deflections
are considered positive downward in most engineering literature, they were
considered positive downward in the paper. It is simple enough to change
the sign convention to one that seems better for a specific purpose if one wishes
to do so.

Professor Niles objects to the use of the term “angle change.” However,
it seems to be descriptive enough of what is meant and it avoids somewhat
cacophonous terminology, as for example, “curvature’” curve. The term
“‘angle change” is used among structural engineers, and the writer can claim
no credit nor take any blame for developing [the name. It would be just as
acceptable to call the quantity the “rate of slope change.”

The numerical value that Professor Niles refers to in Fig. 15(a) was com-

puted by means of the following formula: — 404.90 = — 2—14 (7 X 803.6 + 6

X5135 —1 X047 X 8036+ 6 X 91.10 — 1 X 97.75). The writer used
this formula rather than the one that Professor Niles used since there is a
discontinuity in section of the beam at this particular point. It will be noted
that Professor Niles’ formula requires multiplying or dividing certain ordinates
to the angle-change curve by 10, whereas the foregoing expression uses only
the actual ordinates without modification. As Professor Niles has indicated,
the difference is of no practical consequence.

The use of the procedure to compute influence lines is illustrated ably by
Mr. Weiss. Since deflections of a structure subjected to certain distortions
are the influence values desired, the procedure leads directly to influence
ordinates. In this conneetion the influence for moment at a fixed end of a
beam can be obtained direetly from the calculations of the elastic constants.
For example, in Fig. 10 the influence for moment at the left end of the beam,
when the left end is fixed and the right end is simply supported, is obtained by
dividing the deflections of the various points by the slopé at the end of the
beam. That is, the influence ordinate for moment at the left end due to a unit
131.3A
T80 = 0.725 A.

When computing influence lines for continuous beams, the writer generally
prefers the procedure of introducing the required discontinuity in the span
considered, finding the fixed-end moments; and distributing these moments to
obtain the moments over each support. Then the deflections of the structure
in each span can be determined readily. In certain instances, however, it
might be more convenient to use the procedure given by Mr. Weiss, although
the combination of the deflections due to the reactions at the various points
may lead to results which are the differences between large quantities and which,
therefore, may be relatively inaccurate uniess intermediate caleulations are
carried to a large number of significant figures.

Mr. Eremin has illustrated the use of the numerical procedure for a problem
in which a bending moment is applied at an intermediate point in a beam.

load at the center is
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With a beam of constant moment of inertia, such as Mr. Eremin has considered,
the numerical values should be exact since the moment diagram is made up of
straight-line parts. It should be exact even if the moment diagram were made
up of parabolic segments. :

Mr. Gossard uses the procedure to obtain constants for haunched beams
with various types of haunches at the ends. His application of the procedure
is interesting. However, in view of the complications involved in such a pro-
cedure, it seems preferable to the writer to compute the constants for the beam
by the numerical procedure directly, rather than to fit the different parts
together. Whatever is done will depend upon the designer’s personal prefer-
ence. Mr. Gossard undoubtedly will find extensive use for the tables and
curves he has computed.

Mr. Williamson’s able discussion is .appreciated. His illustration of the
calculation of elastic constants for a member carrying axial thrust is a valuable
addition to the paper and suggests further applications in the field of aireraft
stress analysis. It is not difficult to use the procedure to make analyses of
beams and columns in which the stresses go beyond the elastic limit. One
determines a relationship between moment and “angle change” for any spe-
cified thrust and any given moment, either by means of trial or by a systematic
set of calculations which lead to graphical relationships in the form of eurves.
With these data known, the analysis proceeds in the customary manner, using
the relationship between angle change and moment determined from the mag-
nitude of the moment. ’

With regard to Mr. Qesterblom’s comments, the writer would like to state
that using the procedure—that is, the actual numeriecal computation of a
problem—is the only way in which the procedure can be learned. That it
can be learned in such a way the writer has verified in his teaching.

Professor Dunham has made a careful study of the paper and coneludes,
from the viewpoint of the ordinary man in a typieal engineering office, that the
field of usefulness of the method is limited. He would prefer, apparently, to
have one basic procedure, without even minor modifications, to fit every case
that might arise, although he anticipates use of the method only for structures
requiring special refinement and care in their design.

The writer is glad to have the comments of one familiar with the problems
of the designer. However, he feels that the average designer does not need
all his work laid out for him in such a way that all he has to do is to fill ous a
form. In any case, the paper is written also for the man who decides what
forms are to be filled out. There are many considerations of immense prac-
tical importance, besides the technique of analysis, involved in any design
problem that would require calculations of the type contemplated in the paper.
The average designer, capable of taking these things into aceount, is also ca-
pable of deciding whether to consider straight-line or eurved loading diagrams
or whether to use merely the ordinates at the division points without referring
to any equivalent concentration at all. He has the formulas for any of these
possibilities available to him. Exactly what he should do is merely a matter
of technique. Professor Dunham may decide on a special technique for the
problems that he or his organization ordinarily encounters. Neither the writer
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nor Professor Dunham can decide on a scheme that also would be best in an
application to a problem arising in the design of an airplane, for example.

Regarding specific comments of Professor Dunham’s, the writer would like
to suggest the following:

It is certainly not obvious that one may find from his first ¢rial deflection
curve sufficient data to make a better guess next time. It is extremely for-
tunate, for most practical cases, that the derived deflection curve is a better
approximation to the true curve than the first guess. However, such is not
always the case, as is demonstrated by the problems shown in Figs. 19 and
20. Two entirely different possibilities need to be considered if a procedure
of successive approximations does not converge to the correct result. First,
the procedure may not converge at all, which will be an obvious warning to the
designer that he must find an alternative method for his study of the problem;
but the other possibility is that the procedure converges to the wrong answer,
and the designer has no obvious way of knowing when this is the case. It is

the writer’s earnest hope that the types of problem in which such eventualities.

occur are illustrated sufficiently in the text.

It is unfortunate that the writer’s presentation makes the method “appear
more complicated than it really is.” Professor Dunham’s comments may help
to alleviate matters somewhat. In considering the presentation of the ma-
terial, the writer attempted to take into account the fact that similar pro-
cedures have been presented before and have been used by many people in
numerous problems. Furthermore, the simple basis for the procedure appeared
to be common knowledge. Only departures from more or less standard rou-
tines were described in detail.

Referring to Professor Dunham’s ¢omments under 2(f), the value of a is
entirely immaterial. It can be taken as one unit, as in the other illustrative
problems. It is taken asa general quantity in the figures referred to in order
that the moments, which depend on g, should have the proper dimensions. It
might have been more consistent to have used such a factor in all the problems
where a deflection had to be assumed.

In closing, the writer again wishes to thank all of the discussers for their
efforts to add to the value of the paper. His only contribution has been more
or less a bookkeeping procedure for using a method of analysis that is relatively
old and that has been revised successively by various writers up to the present
time. There are countless variations of similar numerical procedures, many
of which the writer studied in detail before he arrived at the conclusion that
the particular procedure given in the paper led to greater accuracy with less
numerical work than any of the others that came to his attention, Even when
one does not use the part of the procedure that calls for a calculation of equiva-
lent concentrated loads or angle changes, the results of the calculation are
reliable if one takes a somewhat greater number of segments, say, ten to twelve,
in the length of a beam. It is hoped that those who have occasion to deal with
problems of ‘the flexure of members subjected to direct stresses and lateral
load will find the procedure useful and time saving.
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